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Abstract
In this research, homotopy perturbation transform method (HPTM) is used to present the approximate analytical solutions of (2+1) dimensional
type of the Zakharov–Kuznetsovnonlinear partial differential equations. Thismethod gives solutionswithout any linearization anddiscretization
or restrictive assumptions. Special cases of and are chosen as examples to show the capability and efficiency of the method. Maple 19.0 software
is employed to compute the series generated from the algorithm. The results show that HPTM is very simple, reliable and effective in solving
nonlinear problems.
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1. Introduction
Zakharov-Kuznetsov equation of the form

ut + α(um)x + β(un)xxx + γ(uk)yyx = 0 m,n, k ̸= 0 (1)

governs the behavior of weakly nonlinear ion-acoustic waves in
plasma and it comprises cold ions and hot isothermal electrons in
the presence of a uniform magnetic field [1, 2]. In the equation
above,α, β, γ are arbitrary constants andm,n, k are integers. The
ZK equation was first derived for describing weakly nonlinear ion-
acoustic waves in strongly magnetized lossless plasma in two di-
mensions [3].

In the past year, the convergence of ZK equation by homotopy
analysis method (HAM) was investigated with a proved theorem to
show the convergence of HAM and the series solution of this equa-
tion via a reliable algorithm [4]. In [5], the approximate analytical
solution of an ZK (m,n, k) equation was presented with the aid of
the differential transformmethod (DTM). With this technique a so-
lutionwas found in the formof a rapidly convergent serieswith eas-
ily computed components. Homotopy perturbationmethod (HPM)
was applied to solve ZK(m,n, k) equations [6]. The result show
that themethod is very effective. This HPMwas developed by com-
bining the standard homotopy and perturbation method for solv-
ing linear andnonlinear equationswithout discretization, transfor-
mation or restrictive assumption [7]. Since Laplace transform can-
not address nonlinear equations because of the problems caused by
the nonlinear terms, several methods have been used recently to
deal with these nonlinearities such as the Adomian decomposition
method in [8] and the Laplace decomposition algorithm [9,10,11].

In this study, we combined the homotopy perturbation method
with the He’s polynomials (i.e semi analytical methods) and well-
known Laplace transformation method (LTM) which is an ana-
lytical method as used in [13] to produce a highly efficient algo-
rithm and technique for solving (2+1) Dimensional type of the Za-
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kharov–Kuznetsov Equations. Homotopy perturbation transform
method (HPTM) technique has the capability of providing the solu-
tion in a rapid convergent serieswhichmay lead to the solution in a
closed form. The advantage of this method is its capability of com-
bining two methods for obtaining good approximate solutions for
solving (2+1) Dimensional type of the Zakharov–Kuznetsov Equa-
tions.

The advantage of HPM is that it does not require the initial and
boundary conditions like some conservativemethods rather it pro-
vides an exact solution by using only the initial conditions. The
boundary conditions can be used only to justify the obtained result.
Through tables, we will show that the method is equally able to ar-
rive at approximate solutions of Zakharov–Kuznetsov Equations as
obtained in [14].

Some basic concepts of HPTMwere illustrated by consider a gen-
eral nonlinear partial differential equation with the initial condi-
tions [16].

2. Experimental evaluation
To illustrate its basic concepts of HPTM, we present the follow-

ing examples.

2.1. Example 1
Consider the equation in the following form:

ut + (u2)x +
1

8
(u2)xxx +

1

8
(u2)yyx = 0 (2)

The exact solution of equation (2) subject to initial condition

u(x, y, 0) =
4

3
λsinh2(x+ y) (3)

where λ is an arbitrary constant, was derived in [15] and is given
as:

u(x, y, t) =
4

3
λsinh2(x+ y − λt) (4)
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L[u(x, y, t)] =
u0(x, y, 0)

s
− L[(u2)x]

s
− 1

8

L[(u2)xxx]

s
− 1

8

L[(u2)yyx]

s
(5)

The inverse Laplace transform of equation (5) gives

u(x, y, t) =
L−1

s
u0(x, y, 0)− L−1

[
L[(u2)x]

s

]
− 1

8
L−1

[
L[(u2)xxx]

s

]
− 1

8
L−1

[
L[(u2)yyx]

s

]
(6)

Let’s assume that the solution of equation (6) has the form

u(x, y, t) = lim
p→1

pnun(x, y, t) =

∞∑
n=0

pnun (7)

Now, applying the homotopy perturbation method to equation (6) and substituting equation (7) in to equation (6), this gives

∞∑
n=0

pnun =
L−1

s
u0(x, y, 0)− p

[
L−1

[
L[((

∑∞
n=0 p

nun)
2)x]

s

]
+

1

8
L−1

[
L[((

∑∞
n=0 p

nun)
2)xxx]

s

]
+

1

8
L−1

[
L[((

∑∞
n=0 p

nun)
2)yyx]

s

] ]
(8)

By expanding equation (8) and comparing the coefficient of like of power of p , we obtain the following

p0 :
L−1

s
u0(x, y, 0) (9)

p : −L−1

[
L[((u0)

2)x]

s

]
+

1

8
L−1

[
L[((u0)

2)xxx]

s

]
+

1

8
L−1

[
L[((u0)

2)yyx]

s

]
(10)

p2 : −2L−1

[
L[((u0u1))x]

s

]
+

1

4
L−1

[
L[((u0u1))xxx]

s

]
+

1

4
L−1

[
L[((u0u1))yyx]

s

]
(11)

p3 : −L−1

[
L[((u1)

2)x]

s

]
− 2L−1

[
L[((u0u2))x]

s

]
+

1

4
L−1

[
L[((u1)

2)xxx]

s

]
+

1

4
L−1

[
L[((u0u2))xxx]

s

]
+

1

4
L−1

[
L[((u1)

2)yyx]

s

]
+

1

4
L−1

[
L[((u0u1)

2)yyx]

s

]
(12)

Solving the system of equation (9) – (12) using Maple 19.0, we obtain the following

u0 :=
4

3
λsinh2(x+ y) (13)

u1 :=
32

9
λ2tsinh(2y + 2x)− 49

9
tλ2sinh(4x+ 4y) (14)

u2 :=
272

9
λ3t2cosh(2y + 2x)− 608

9
λ3t2cosh(4x+ 4y) +

1040

27
λ3t2cosh(6x+ 6y)− 32

27
λ3t2 (15)

u3 := −32768

81
λ4t3sinh(6y + 6x)− 22720

243
λ4t3sinh(4x+ 4y)

+
16384

243
λ4t3sinh(2x+ 2y)− 192160

243
λ4t2sinh(8y + 8x) (16)

and so on for other components. The solution after the fourth iteration as is giving by

u(x, y, t) =

3∑
n=0

pnun = u0 :=
4

3
λsinh2(x+ y) +

32

9
λ2tsinh(2y + 2x)− 49

9
tλ2sinh(4x+ 4y)

+
272

9
λ3t2cosh(2y + 2x)− 608

9
λ3t2cosh(4x+ 4y) +

1040

27
λ3t2cosh(6x+ 6y)

− 32

27
λ3t2 − 32768

81
λ4t3sinh(6y + 6x)− 22720

243
λ4t3sinh(4x+ 4y)

+
16384

243
λ4t3sinh(2x+ 2y)− 192160

243
λ4t2sinh(8y + 8x) (17)
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2.2. Example 2
Consider the ZK (3,3,3) equation in the following form:

ut + (u3)x + 2(u3)xxx + 2(u3)yyx = 0, (18)
The exact solution of equation (18) subject to initial condition

u(x, y, 0) =
3

2
λsinh

[1
6
(x+ y)

]
(19)

where λ is an arbitrary constant, was derived in [15] and is given
as:

u(x, y, t) =
3

2
λsinh

[1
6
(x+ y − λt)

]
(20)

To applyHPTM,we take the Laplace transformof equation (18) sub-
ject to the initial condition (19), we have

L[u(x, y, t)] =
u0(x, y, 0)

s
− L[(u3)x]

s
− 2

L[(u3)xxx]

s

− 2
L[(u3)yyx]

s
(21)

The inverse Laplace transform of equation (21) gives

u(x, y, t) =
L−1

s
u0(x, y, 0)− L−1

[L[(u3)x]

s

]
− 2L−1

[L[(u3)xxx]

s

]
− 2l−1

[L[(u3)yyx]

s

]
(22)

Let’s assume that the solution of equation (22) has the form

u(x, y, t) = lim
p→1

pnun(x, y, t) =

∞∑
n=0

pnun (23)

Now, applying the homotopy perturbationmethod to equation (22)
and substituting equation (23) in to equation (22), this gives

∞∑
n=0

pnun =
L−1

s
u0(x, y, 0)− p

[
L−1

[L[((∑∞
n=0 p

nun)
2)x]

s

]
+ 2L−1

[L[((∑∞
n=0 p

nun)
2)xxx]

s

]
+ 2L−1

[L[((∑∞
n=0 p

nun)
2)yyx]

s

]]
(24)

By expanding equation (24) and comparing the coefficient of like of power of p , we obtain the following

p0 :
L−1

s
u0(x, y, 0) (25)

p : −L−1

[
L[((u0)

3)x]

s

]
+ 2L−1

[
L[((u0)

3)xxx]

s

]
+ 2L−1

[
L[((u0)

3)yyx]

s

]
(26)

p2 : −3L−1

[
L[((u2

0u1))x]

s

]
+ 6L−1

[
L[((u2

0u1))xxx]

s

]
+ 6L−1

[
L[((u2

0u1))yyx]

s

]
(27)

p3 : −3L−1

[
L[((u2

0u2))x]

s

]
− 3L−1

[
L[((u0u

2
1))x]

s

]
+ 6L−1

[
L[((u0u

2
1))xxx]

s

]
+ 6L−1

[
L[((u2

0u2))xxx]

s

]
+ 6L−1

[
L[((u2

0u2))yyx]

s

]
+ 6L−1

[
L[((u0u

2
1))yyx]

s

]
(28)

Solving the system of equation (25) – (28) using Maple 19.0, we obtain the following

u0 :=
3

2
λsinh

(
1

6
x+

1

6
y

)
(29)

u1 :=
3

8
λ3tcosh

(
1

6
x+

1

6
y

)
(30)

u2 :=
45

512
λ5t2sinh

(
1

6
x+

1

6
y

)
− 51

512
λ5t2sinh

(
1

2
x+

1

2
y

)
(31)

u3 := − 51

4096
λ7t3cosh

(
1

6
x+

1

6
y

)
− 65

2048
λ7t3cosh

(
1

2
x+

1

2
y

)
+

17

4096
λ7t3cosh

(
5

6
x+

5

6
y

)
(32)

and so on for other components. The solution after the fourth iteration as p → 1 is giving by

u(x, y, t) =

3∑
n=0

pnun =
3

2
λsinh

(
1

6
x+

1

6
y

)
+

3

8
λ3tcosh

(
1

6
x+

1

6
y

)
+

45

512
λ5t2sinh

(
1

6
x+

1

6
y

)
− 51

512
λ5t2sinh

(
1

2
x+

1

2
y

)
− 51

4096
λ7t3cosh

(
1

6
x+

1

6
y

)
− 65

2048
λ7t3cosh

(
1

2
x+

1

2
y

)
+

17

4096
λ7t3cosh

(
5

6
x+

5

6
y

)
(33)
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Table 1: Solutions using the 4-iteration of HPTM.

x y t Example 1 Example 2
Present From [14] Exact Present From [14] Exact

0.1 0.1 0.2 5.355135576E−5 5.355355975E−5 5.393877159E−5 5.000933482E−5 5.000914112E−5 4.995923204E−5
0.3 5.330325430E−5 5.330816448E−5 5.388407669E−5 5.000937234E−5 5.000915456E−5 4.993421817E−5
0.4 5.305539226E−5 5.306406852E−5 5.382941057E−5 5.000940986E−5 5.000910586E−5 4.990920434E−5

0.6 0.6 0.2 2.988769738E−3 2.989873669E−3 3.036507411E−3 3.020040803E−4 3.020039162E−4 3.019530008E−4
0.3 2.964911397E−3 2.967173317E−3 3.035778955E−3 3.020041186E−4 3.020038551E−4 3.019274992E−4
0.4 2.941590341E−3 2.945226366E−3 3.035050641E−3 3.020041568E−4 3.020037937E−4 3.019019978E−4

0.9 0.9 0.2 1.100112510E−2 1.102484681E−2 1.153697757E−2 4.567805185E−4 4.567802934E−4 4.567281735E−4
0.3 1.076823444E−2 1.079635470E−2 1.153454074E−2 4.567805577E−4 4.567802556E−4 4.567020404E−4
0.4 1.056592099E−2 1.057416210E−2 1.153210438E−2 4.567805969E−4 4.567801785E−4 4.566759074E−4

3. Results and discussion
An approximate solution of equation (2) and (18) subject to ini-

tial condition (3) and (19) respectively are presented using HPTM.
Also, to show the accuracy and convergence of HPTM, the exact
solution, the variation iteration method (VIM) solution obtained
in [14] and the present solution are illustrated in Table 1. It is ob-
served that the accuracy ofHPTM forZK(m,n, k) equation is con-
trollable and its results aremore closer to exact solution depending
on the choice of x, y and t. Therefore, if more terms of HPTM are
computed, it is possible that the numerical results obtained will
correspond to exact solutions.

4. Conclusion
In this research, we have successfully developed an algorithm

for solving (2+1) Dimensional type of the Zakharov–Kuznetsov
Equations with specific initial conditions using the HPTM. The so-
lution obtained after 4th iteration shows that it will be closer to
exact solution if more terms can be computed. Therefore, HPTM
has ability of reducing the volume of the computational work con-
siderably compared to other methods while still maintaining the
high accuracy of the numerical result. Because of its reliability and
applicability, the method can be considered as a good refinement
of existing numerical techniques and can be applied to solve some
nonlinear differential equations.
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