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Abstract
Accurate electricity demand forecasting for a short horizon is very relevant aspect for managing day-to-day operation control, scheduling, and
planning. The deterministic variables such as type of days, and weather variables such as temperature are the major factors that affect the
forecasting accuracy. Since the automation systems are continuously increased and implemented by smart meters and internet of things, static
models computations are replacing accordingly by dynamic real time robust forecasting models. Therefore, time series, regression, machine
learning, and deep learning models are designed and implemented on the electricity demand dataset of Kathmandu Valley, Nepal. Accuracy
improvement is also considered during model design. The result shows that the deep learning model, long short termmemory (LSTM) performs
outstanding performance in-terms of mean absolute percentage error (MAPE) value 1.56%, and root mean square error (RMSE) value 3.12 MW.
While analyzing the regression coefficients, electricity demand during Dashain shows the lowest variation while Tihar (Dipawali/Laxmi Puja)
shows the highest (peak) demand variation.
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1. Introduction

The electricity demand forecasting is indispensable procedure
for energy planning in power industry. Based on lead hour of
forecasting, it is classified as short term, medium term, and long
term forecasting. Apadula et al. [1] classified the demand load
forecast into four categories: very short-term forecasts (from a
few minutes to 1 h ahead), short term forecasts (from 1 h–1 week
ahead), medium-term forecasts (from one week to a year head)
and long-term forecasts (longer than a year ahead). However, ac-
cording to Zamo et.al. [2], energy prediction can be categorized
into five types: Intra-hour predicting for next 15 min to 2h with
a time step of 1 min; Hour-ahead predictions with hourly granu-
larity with a maximum lead time of 6 h; Day-ahead prediction with
one to three days ahead; Medium-term prediction from 1week to 2
months ahead; and Long-term prediction with one to several years
for monthly or annual production. Such lead time prediction in-
fluences the selection of models, methods and the choice of exter-
nal parameters in the model. For example, long term forecasting
model consist the socio-economic and population growth as the
major factor, whereas we exclude these factors and include atmo-
spheric, seasonal and other short-termdependencies [3]. However,
this paper focuses on development of the short-term electricity de-
mand model to predict the electricity demand for the capital city
of Kathmandu, Nepal.

Kathmandu is the capital of Nepal, and the demand for electric-
ity in this region ranging from 101.12 MW to 229 MW throughout
the day [4]. This variation throughout the day is due to consumers’
daily activities and their reactions to the effects of environmental
and social factors. Understanding these effects allows the Nepal
Electricity Authority to better plan and even implement demand
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response to manage it in the future [5]. For the electricity con-
sumption, economic status of the people plays a significant role.
Therefore, three different economic development scenarios such
as (i) Low growth rate of 4.5% GDP, (ii) Normal growth rate of 7.2%
GDP, and (iii) High growth rate of 9.2% are were considered while
analyzing the demand. Regarding the consumption, [6] assumed
that 100% of the cooking and 75% of water heating in urban ar-
eas by 2020, metro cities by 2025. This study concluded that there
would be 30% rise in demand of electricity by 2020 compared to
2015’s demand. This prediction made in 2015 is almost achieved
by 2021-2022. In case of Nepal, people were facing the electricity
crisis and power outage because of insufficient installed capacity,
while these days Nepal Electricity Authority (NEA) is announcing
different strategy to promote the electrical consumption.

Very few attempts have been done for short term load forecast-
ing in context of Nepal[4, 7]. A method called artificial neural net-
work (ANN) is used to anticipate the future load of Kathmandu Val-
ley of Nepal. The Neural Network is build and trained with histor-
ical data along with seven different input variables. This trained
model is then used for the day ahead prediction for 24 hours’ load.
Bhandari et al.[7] estimated the forecasting error significantly low,
where mean square error (MSE), RMSE, and MAPE are found be-
tween 2.59 MW to 7.78 MW, 1.61 MW to 2.79 MW, and 1.61% to
5.07%, respectively. They concluded that the ANN technique was
the best among all the techniques showing the robustness of the
method for non-linear load data. However, they estimated accu-
racy only for one specific date, and hence obtained conclusion or
recommendation may not have a strong validity. Yaju et al. [4]
presented a study of electricity demand and its relation to the pre-
vious day’s lags and temperature by examining the case of a con-
sumer distribution center at Baneshwore grid. The effect of the
temperature on load, load variation on weekends and weekdays,
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and the effect of load lags on the load demand were thoroughly
discussed. Based on the analysis conducted on the data Yaju et
al. [4], short-term load forecasting is conducted for weekdays and
weekends by using the previous day’s demand and temperature
data for the whole year. Using the conventional time series model
as a benchmark, an ANN model was developed to track the effect
of the temperature and similar day patterns. The results show
that the time seriesmodels with feed-forward neural networks (FF-
ANNs), predicts with 0.34% MAPE on a weekday and 8.04% on a
weekend. However, the experimental result was taken from a ran-
domly picked less number of test results, therefore the conclusion
could be biased. Therefore, we have focused to fill up a research
gap by constructing a robust short-term electricity demand fore-
casting model.

1.1. Related Works

Several works have been published world-wide introducing dif-
ferent methods to tackle the short-term load forecasting (STLF)
problems. These methods split into three large groups: artificial
intelligence [8, 9], statistical [10, 3], and hybrid models[11, 12]. In
statisticalmethods, traditional time series forecastingmodels espe-
cially auto-regressive integrated moving average (ARIMA) models
[13], Seasonal ARIMA (SARIMA) [14], and exponential smoothing
models [15] are considered as the baseline for many years. In such
models lagged inputs of historically collected data predicts the fu-
ture electricity demand.

Several modeling concepts for robust parameter estimation
used prior to 1990 were discussed in [16, 17], and concluded that
regressionmodeling concept was superior [17, 18, 19, 20, 21, 22, 23]
for short term load forecasting. The main feature of this approach
is the interpretative capability of explanatory variables so that im-
pact of individual variables can be analysed. However, the charac-
teristics of electricity demand are highly non-linear. The handling
capability of non-linear dataset is found superior in artificial intel-
ligence (AI) approach such as machine learning and deep learning
approach. In these approach Ridge, SVM, recurrent neural net-
work (RNN), LSTM, and gated recurrent unit (GRU) are the popular
machine learning approach among the researchers. In [24], hourly
electricity load forecasting state space model based on stochastic
behavior in time-varying process were design and presented to ac-
count for changes in customer behavior and in utility production
efficiency.

To tackle the non-linear and highly dynamic load fluctuations
of residential customers, artificial intelligence techniques have be-
come popular in load forecasting [25]. The main techniques in-
clude ANN [15], Ridge regression, and support vector machines
(SVM) [25]. The Ridge regression allows to perform non-linear
regression by constructing a linear regression function in a high
dimensional feature space. While ANN model tends to provide
slightly better forecast [26], this comes at a cost of longer computa-
tional times. The optimal number of layers and neurons in neural
network model has to be determined empirically [14].

The presence of non-linearity on electricity demand is due to the
unpredictable human behavior and the activities. In residential ar-
eas, electricity demand may rise to a peak during the morning and
evening. According to the calendar, electricity demand behavior
is changing for example, people set up the out-door roaming plan
during long holidays. If they move out from home, electrical ap-
pliances may not be used properly. However, during the festival
period people may gathered at home for the celebration. In such
condition,electrical appliances may be in use. Therefore, the spe-
cial days such as festivals and holidays show the special character-
istics. Residential customers are very sensitive to weather fluctua-
tions and calendar (weekday, weekend, and holiday). Retail stores,
restaurants, hotels and educational institutes are commercial cus-

tomers, and their demand is affected by business schedules and
some weather behavior. This results in electricity demand drop-
ping significantly during weekends or holidays. The issue on fore-
casting accuracy due to public holidays was discussed by Ziel et al
[27]. They presented a state-of-the-art technique to handle the cal-
endar impacts by removing them from the data set, treating them
as weekend or introducing separate holiday dummies. They con-
cluded that the incorporation of holiday effects can improve the
forecasting accuracy during public holidays periods by more than
80%.

Similarly, weather condition often plays an important role in the
forecasting accuracy. Short-termdaily peak power load in summer
or in winter fluctuates regularly, showing an obvious periodical
characteristic. It is greatly affected by temperature, wind, precipi-
tation, and other meteorological factors. Including such meteoro-
logical factors in the model, forecasting accuracy was significantly
improved by 13% for Hokkaido Prefecture dataset in Japan [23].
However, among these meteorological factors, many research ar-
ticle include only temperature variable considering the most influ-
encing factor. They suggest that if temperature factor is included
in the model, the impact of wind, precipitation and other meteoro-
logical factors found negligible [3, 23]. In some study, the weather
variables are excluded due to three major reasons: (i) they show
lower impact on electricity demand [28]; (ii) it is expensive to in-
stall weather stations to collect all these data; and (iii) there are
potential collinearity problems by employing several weather vari-
ables as explanatory variables [29].

Since our objective is concerned to the impact analysis of tem-
perature, we have incorporate only temperature variable. The ma-
jor contributions of this research work are as follows:

1. This research contributes as the pioneer literature for the
interested researcher in short-term forecasting domain for
Nepal

2. The marginal impact of temperature that leads to raising the
demand for day hours and night hours is explored for Kath-
mandu Valley, which is quite useful for demand side manage-
ment.

3. The utility company of Nepal (i.e NEA) and other private com-
panies can implement this model to maintain grid stability
and overcome black out.

2. Materials and Methods

2.1. Study Area Selection

Kathmandu is the capital and also the largest city 50 km2 area
with dense population of around 20 thousand people per square
kilometer [30]. KathmanduValley is growing at 4%per year accord-
ing to World Bank in 2010, one of the fastest-growing metropoli-
tan areas in South Asia, and stand at the first city in Nepal to face
the unprecedented challenges of rapid urbanization and modern-
ization at a metropolitan scale. The population of Kathmandu in
2020 was about 2.5 million with 4.63% annual growth. This repre-
sents 9.3% population of the country. Since the metropolitan re-
gion is considered as the economic hub, the consumption of the
metropolitan region alone is about 25% of the total consumption
of Nepal. There are many factories, industrial parks, government
offices and universities campus within this reason.

2.2. Electricity Demand Profile

In this study, hourly demand data provided by NEA from 1 May
2017 to 31 Jan 2019 are used. Since the samples of observations are
hourly recorded, we have 15720 samples for entire time horizon.
According to annual report of NEA [5], Kathmandu regional office
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Figure 1: Location map of Kathmandu Valley, Nepal[30]

distributed the electricity to 674,047 consumers in KathmanduVal-
ley, which is 16% of total consumers of Nepal.

The pattern of electricity demand exhibits a trend, seasonal pat-
terns, weekly and daily patterns, and holiday effects. The premise
of effective load management becomes more reliable due to the
accurate load forecasting [31]. Forecasting supports utility com-
panies in their operations and supply management for their cus-
tomers. Electric load forecasting is an important process that can
increase the efficiency and revenues of electricity generation and
distribution companies. It helps them to plan their capacity and
manage their distributions to all the consumerswith their required
energy. The accuracy in forecasting is the key factor. The key fac-
tors that influence spot prices are mainly depends on the demand
aswell as the ability to respond to this demand by the available gen-
erating units. Therefore, possible errors in load forecasting could
have significant cost implications for the market participants [23].

Fig. 2 shows the variation of load demand for 12 months of the
year. Blue line shows the daily load variation from January 2018 to
December 2018 and Orange line shows the load demand during the
public holidays.

In Kathmandu city, the nightlife almost end at the mid-night
which is reflecting in Fig. 3 where the demand is continuously de-
creasing after mid night until the morning hours. In the morning
after 8 am, the demand is again becomes high because of people’s
movement, break-fast, office, and day hours.

In Fig. 4, blue dots indicate electricity demand during no holiday
(Holiday=0) and orange dots indicate electricity demand during the
holiday. It clearly describes the huge variation on electricity de-
mand during the holiday as compared to non-holiday electricity
demand data.

2.3. Temperature Impact

Overall peak demand in Nepal is observed during the Tihar festi-
val, especially on the day of ‘Dipawali/Laxmi puja’ often reaches to
1300 MW. This peak demand is because of the celebration that day
as the ‘lightening day’. NEA faces the power supply management
challenges especially on this day. However, there is huge swing
on the electricity demand due to temperature. The micro-study of
temperature for short term load forecasting and impact analysis
of climate change was conducted by [32] using a simple regression
model for Thai data.

3. Methodology

The overall methodology is presented in Fig. 5 . It consist three
major blocks named as data-preparation, model-development, and
selection of best model.

3.1. Data-Preparation

The raw electricity demand dataset and the temperature dataset
hence collected was consist few missing values and outliers. The
quality of data affects the data mining results. Raw data needs to
be pre-processed so as to improve the efficiency. Therefore, the
preprocessing of dataset is one of the most critical steps that deals
with thepreparation and transformationof the initial dataset. Data
cleaning, data Integration, and the data Transformation were the
major steps involved in this research works.

3.1.1. Stationarity test
Stationary series has constant mean and variance over a time.

The Dickey-Fuller test is implemented to test presence of station-
arity in dataset. TheNull Hypothesis (H0) suggests that the dataset
is non-stationary while alternate Hypothesis (H1) suggests dataset
is stationary i.e it does not have time-dependent structure. In our
experiment p − value < 0.05 and therefore reject the null hy-
pothesis H0, that means the data does not have a unit root and is
stationary.

3.1.2. Lagged load and temperature impact
The lag load or loads from the previous day or previous hour of

the same hour can be highly related to future loads. Studies on
lag load relation correlation [33] showed that first-day lag impact
has a high contribution to the demand. Likewise, one study [34]
discussed the repletion of weekdays such that the 7-day lag had a
high contribution because of the same day and same hour relating
similar effects each day. Fig. 6 reflects the order of moving aver-
age (MA) from autocorrelation function (ACF) and order of auto-
regressive (AR) from partial auto-correlation (PACF).

3.1.3. Data normalization
Normalization is a technique often applied as part of data prepa-

ration formachine learning. The goal of normalization is to change
the values of numeric columns in the dataset to a common scale,
without distorting differences in the ranges of values. It is used
when features have different ranges. MinMax algorithm is used to
normalize data within range of 0 to 1.

3.2. Model Development and Mathematics

There are several methods of model design in literature but the
accuracy on electricity demand forecasting from traditional statis-
tical modeling approaches to the modern DNN approaches to cope
the non-linear characteristics of electricity demand.

In this study several experiments are conducted for the follow-
ing methods, (i) Time-series model: ARIMA, (ii) Regression model:
MLR, (iii) Machine learning model: RIDGE and SVM, and (iv) Deep
learning model: RNN, LSTM, and GRU,

3.2.1. Time-series models
TheARIMAalgorithmwas integrated by autoregression (AR) and

moving average (MA) method with an addition of integrative mod-
ule. This model is characterized by three terms, respectively, p, d,
and q. The general format of the model is ARIMA(p, d, q). The
term p is the order of the AR term, q is the order of the MA term,
andd is thenumber of differencing required for obtaining a station-
ary time series. The forecasting equation of the ARIMA(p, d, q)
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Figure 2: Overall electricity demand in Mega Watts.

Figure 3: Hourly electricity demand pattern in Mega Watts.

Figure 4: Variation of electricity demand on temperature change forwork-
ing days

is expressed as,

yt = c+

p∑
i=1

ϕiyt−i +

p∑
j=1

θiϵt−j + ϵt (1)

where c is the constant representing the intercept,ϕi and yt−i, re-
spectively, are the parameters and regressors for the AR part of the
model, while θj and ϵt−j , respectively, represent the parameters
and regressors of the MA part of the model, whereasϵt is the ran-
dom error term. The selection of appropriate values for p, d, and q
can be determined from ACF and PACF test where as the optimum
values can be obtained from auto arima functions in Python.

3.2.2. Multiple linear regression (MLR) models
In MLR response variable is depends on more than one explana-

tory or independent variables.
To estimate k parameters we need at least n equations, where

n >= k, then the general equation can be represented as,

y = Xβ + ϵ (2)

where, y = (y1, y2, ..., yn)
′ is a n× 1 vector of n observation and

X consists of n × k matrix of n observations on each of the k ex-
planatory variables,β = (β1, β2, ..., βk)

′ is a k×1 vector of regres-
sion coefficients and ϵ = (ϵ1, ϵ2, ..., ϵn)

′ is n× 1 vector of random
error components. The estimation of these generic question is per-
formed using ordinary least square (OLS) estimation methods.

The least squaremethod recommends computing β = β0 which
minimizes,

LT (β) =

T∑
t=1

(yt − βxt)
2 (3)

The Ridge regression procedure is a slightmodification on the least
square method and replaces the objective function LT (w) by,

a||w||+
T∑

t=1

(yt − wxt)
2 (4)
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Figure 5: Methodology.

(a) ACF plot for electricity demand.

(b) PACF plot for electricity demand.

Figure 6: Determination of AR and MA order.

where a is a fixed positive constant, parameter β in ols is replaced
by weight (w), and considering least square’s special case, 4 can be
re-expressed as minimum expression by,

a||w||+
T∑

t=1

ξ2 (5)

where the constraints yt = wxt = ξt, t = 1, ..., T .

3.2.3. Machine learning models
SVM is a good choice to characterize the nonlinear statistical fea-

tures which existed in the small-scale dataset. This algorithm is
frequently applied by many researchers in recent years [35]. The
fundamental principle of the model is mapping the input data into
a high-dimensional space to explore the nonlinear relationship be-
tween the input data and output variables; the input dataset is as-
sumed as ((x1, y1), ..., (xn, yn)), and the optimization is described
by the following formula:

min
1

2
wTw + C

1

n

n∑
i=1

(ξi − ξ∗i )

wTϕ(xi) + b− yi ≤ ϵ+ ξi

yi − wTϕ(xi)− b ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0, 1, ..., n

(6)

where w, b, ξ, and ξ∗ are the decision variable parameters of the
optimization problem;wTw is a regularized term, and ξand ξ∗ are
the slack variables; C is the penalty parameter,ϵ is the insensitive
loss coefficient.

3.2.4. Deep learning models
When the number of layers are increased, then such dense neu-

ral network is called deep neural network and suchmultilayer per-
ceptions are the foundation to most of the deep learning models.
The basic deep network moves forward in direction with feedback.
Depending on the number of hidden layers precision of the output
can be uplifted. The input is fed to the hidden layers by the weight,
sum of the product of inputs Ijand weightsWij. The hidden layer
is used sigmoid activation functions to limit the values within the
range of 0 to 1. The RNN is computed as,

ht = f(ht−1, xt)

ht = tanh(whhht−1 + wxhxt)
(7)

The RNN is a special type of DNN with memory as their output
which depends on the previous commutations. To overcome the
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limitation of RNN, LSTM is introduced. Unlike in RNN, LSTM al-
lows the network to keep or forget the information relevant to the
sequence.

where, it, ft and ot are the input, forget and output gates as
shown in Fig. 7. These gates help to learn and store the sequence
related information from previous cells. Ct and Ĉ are the new cur-
rent cell state and new candidate value for cell state. Similarly, cell
state acts as transport highway that transfers relative information
way to the sequence chain. Amemory to the networkwhich carries
out the information from earlier state to the last state which helps
to reduce the effect of short-term memory. The computations of
LSTM cells are stated as,

ht = f(ht−1, x1)

it = σ(wi(ht−1, xt) + bi)

ft = σ(wf (ht−1, xt) + bf )

ot = σ(wo(ht−1, xt) + bo)

Ĉ = tanh(wc(ht−1, xt) + bc)

Ct = ft.Ct−1 + it.Ĉt

ht = ot.tanh(Ct)

(8)

As seen from equation 8, decisions to block the signal (0 output)
or not block (1 output) are made depending on the outcome of the
gates and updates the old cell state into the new cell state. Simi-
larly, GRU is an another in deep neural network unit. This unit also
adopts the feature of gates but here, it is limited to only 2 gates.

zt = σ(wz(ht−1, xt) + bz (9)

Similarly, Reset get here decided what past information is to be
processed further.

rt = σ(wr(ht−1, xt) + br (10)

As GRU used hidden state to transfer information, ĥt, here rep-
resent the current memory content. With reset gate apply 0 to 1
value the element wise product with previous hidden state deter-
mines the current memory content.

ĥt = tanh(w(rt× rht−1, xt)) (11)

Final output is decided with the help of update gate, as informa-
tion from precious state ht−1 and the current memory content ĥt
are used to determine output.

ht = (1− zt)× ht−1 + ztĥt (12)

4. Result and Discussion
There are several evaluation criteria to assess the performance

of the different models. Most of the forecasting papers uses these
three evaluationmethodswhich are theMSE, RMSE, andMAPE; the
formulations are detailed as follows,

RMSE =

√√√√ 1

n

n∑
i=1

|yi − ŷi|2

MAPE =

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100

n

(13)

Here, yi is the observed data, ŷi is the predicted value of the fore-
cast model, and n is the number of the observed dataset. In this
paper, we have considered only RMSE and MAPE values.

We have prepared a web-page which is lunched in the local
server to display the visualization of demand and predictions. The
individual model performances are as,

Fig. 8 shows theperformances for differentmodels. The training
and testing performance for each models presented in Fig. 8. The
performance of time-series model (ARIMA) predicted with MAPE
2.35% and RMSE value 4.51MW. Similarly the performance of MLR
is much impressive compared to ARIMA with MAPE value 1.64%
corresponding to RMSE value 3.17MW. The major advantage of
MLR model is that impact of variables can be interpreted accord-
ing to the forecasting model.

Performance of ML models RIDGE and SVM are two ML model
that we have used to estimated usingmachine learning techniques.
The SVM performs better than both time series and MLR model in
terms of forecasting accuracy. The improvement on forecasting in
SVM is due to thenon-linearity handling capacity ofmachine learn-
ing models. However, the best forecasting performance in-terms
of training and testing for Kathmandu Valley is given by the deep
learning model, LSTM. Since the characteristics of long term de-
pendencies can be handled by LSTM, it can ignore the un-related
information to the demand while have a memory to consider re-
lated information. This helps the model for better performance.

The prediction error is evaluated as the deviation of predicted
electricity demand from the true electricity demand. This devi-
ation shows the amount of over forecasted value or the under-
forecasted value. Normally, over-forecast cause the excess of re-
source while under-forecast may cause for the scarcity on the de-
mand that may lead for load-shading. Fig. 9 describes the devia-
tions from true value while predicting. Most of the variation oc-
curs during day hours, because of more human activities.

The prediction error in terms of MAPE is expressed in Fig. 10.
This plot shows the presence of outliers during the morning and
day hours, indicating high volatile demand during these hours.

The major limitation of machine learning or deep learning mod-
els is their black box performance. They are good enough for accu-
rate performancewhile the analysis of the individual variables and
their impact is missing. For this purpose, MLR can be considered
as the best option.

4.1. Impact of days, previous days, and special days
Using MLR models, the coefficients are analysed and plotted in

Fig. 11 where the hourly demand variation for each days. There
is huge fluctuations after 10 am to evening 8 pm and Wednesday
shows the huge variation. Interestingly, Tuesday shows the least
variation in demand.

Fig. 12a shows the hourly demand variation impact due to the
previous days demand. The graph indicates that the impact of yes-
terday (Demand1D) has the highest impact for next day demand
and that impact of two previous day (Demand2D), and seven pre-
vious day(Demand7D) going decrease in accordingly, this result is
found as our expectation.

Fig. 12b also shows the hourly demand variation according to
the special days such as, Gatasthapana, Dashain, Tihar, and the
working day after the holiday. The graph indicates that Dashain
has the lowest demand variation while Ghatasthapan has highest
demand variation untill evening 7 pm, while after 7 pm Tihar (Di-
pawali/Laxmi Puja) shows the peak demand variation. The reason
behind low demand variation in Dashain is because of shut down of
all the industries and the peak variation during Tihar/Laxmi Puja
is due to Lightening function at the home.

4.2. Impact of temperature
Fig. 13 describe the marginal increase or decrease of electricity

demand per degree rise or fall in temperature for eachmonths and
days.
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Figure 7: Repeating module of LSTM cell.

Figure 8: Visualization of demand and predictions in local server.

Figure 9: Deviation of electricity demand from the actual demand (LSTM model)
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Figure 10: Hourly variation of MAPE for LSTM model.

Figure 11: Impact of individual days for electricity demand.

(a) Impact of previous days.

(b) Impact of special days.

Figure 12: Impact analysis of calendar for electricity demand.

Fig. 13 shows that rate of change of demand during winter
(November to March) is quite different deviations than the rest
of months. Considering the April as the base months, demand is
decreasing during day hours, especially after 8 am to 9 am. Be-
cause the people may turn off electrical appliances and move out
for sun or move to office. Similarly, during the Summer months
(May to September) people may use fans and cooler during the day
or evening hours, so that electricity demand per degree rise/fall in
temperature should be high compare to morning hours.

5. Conclusion
Accurate forecasting of electricity demand is the key factor

for the management of load distribution and consumption. The
dataset are continuously increasing because of smart meters and
automation systems. Electricity demand data are continuously in-
creased by smart meters and automation systems, static models
computations are replacing accordingly by dynamic real time ro-
bust forecasting models. Therefore, time series, regression, ma-
chine learning, and deep learning models are constructed and im-
plemented onhistorical dataset of KathmanduValley ofNepal. The
result shows that deep learningmodel predict thewith better accu-
racy compared to other models. The overall prediction on the test
dataset is found that time series model predicted with MAPE 2.39%
and RMSE value 4.78 MW. While the regression model is much im-
pressive compared to time-series with MAPE value 1.58% corre-
sponding to RMSE value 3.16 MW. The best performance among
the models is obtained from deep learning model (LSTM) which is
1.56%. However, for the analysis of the impact of variables to the
electricity demand is possible from regression model. As our ex-
pectations, impact of previous day, special days, and temperature
is estimated.
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Figure 13: Change in electricity demand per degree rise/fall in temperature.
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