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Abstract
In this study, we formed a mathematical model for the transmission of malaria infection in other to explore the transmission dynamics and op-
timal control. We considered the Sh, Eh, Ih, Rh, Sv , Ev , Iv model with optimal control considering the effect of two optimal controls (Use of
bed net and Treatment). The positivity and boundedness, reproduction number, stability and optimal control analysis were carried out accord-
ingly. Numerical simulations were done. We further discovered the conditions necessary for the stability of both disease-free equilibrium (DFE)
and endemic equilibrium. The DFE is asymptotically stable. Also, the endemic equilibrium is stable. The numerical simulation also shows the
effective use of bed net and Treatment on the curve. Finally, we deduce that the use of bed nets and treatment over a long period can eventually
help to flatten the curve of infection. However, this control intervention has no significant impact on the mosquito population.
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1. Introduction

According to [5] it was discovered that malaria is a disease of
universal significance that results in about 600million cases yearly
andhas an estimation of 2.2 billion people getting infected. Malaria
is a deadly infectious disease that is caused by the plasmodium par-
asite that transmits to people through the bites of an infected fe-
male anopheles mosquito which initiates its protists via saliva into
the circulatory system and finally into the liver where it grows
and recreates. [5] also observed that more than a century after
the resignation of the parasite and finding effective, repellants, in-
secticides, and drugs, it was discovered that the infection is as old
as humanity itself. In Africa mostly in young children, malaria is
the most life-threatening protozoan disease (numerically). It is ac-
countable for over 750,000 deaths recorded annually [4].

According to Finkel [1], the rate at which children die per day is
as a result of malaria. Malaria is preventable and curable,229 mil-
lion cases of malaria were recorded in 2019 [7]. The accumulated
population of malaria mortality rate stood at 409,000 in 2019, com-
pared with 411 000 deaths in 2018. Children under the range of 5
years are themost exposed and vulnerable group affected by the in-
fectious disease; it was recordedthat our if the 94%mortality cases
recorded, they account for 67% out of it [7].

Mathematical modeling has become an important tool in under-
standing the dynamics of disease transmission and in decision-
making processes regarding intervention programs for disease
control according to [2]. It can predict if the infectious disease
(malaria) will increase or decrease in the population. Control mea-
sures, vaccines, and treatment with useful information or guide-
lines can be estimated by mathematical models to the masses to
eliminate the disease. Malaria can be eliminated if the mosquito
population is decreased to a below certain threshold according to
Ronald Ross. The model of Ronald Ross was improved after some
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Figure 1: Life cycle of P. falciparum parasite.

years by MacDonald. MacDonald proved and show that a decrease
in the mosquito population has little effect on the epidemiology of
malaria in an area with the severe and chronic transmission. Vari-
ous features and traits of malaria to the model of MacDonald were
stated by J.L Aron and R.M May which includes reproduction and
growth phase inmosquito, infection, and time of human immunity.
Mathematical modeling also provides a structure for knowing the
transmission Dynamics for malaria and can be used for optimal al-
location of different prevention against malaria [8]

2. Model formulation

The mathematical model for the transmission dynamics was for-
mulated as follows: N is the total population density which is di-
vided into seven sub classes. The susceptible human class Sh,
comprising those people who are capable of contracting the dis-
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Therefore we have

Eh(t) ≥ Eh(0)e
(α1h+µh)t (3)

Also in the third equation

dIh
dt

= α1hEh − (α2h + µh + δ) Ih

dIh
dt

≥ − (α2h + µh + δ) Ih

Therefore we have

Ih(t) ≥ Ih(0)e
((α2h+µh+δ)t

Also in the fourth equation

dRh

dt
= α2hIh − (µh + σ)Rh

dRh

dt
≥ −(µh + σ)Rh

Rh(t) ≥ Rh(0)e
(µh+σ) t

Also, we have the fifth equation

dSv

dt
≥ πv − λvSvIh − µvSv

Therefore we have

Sv(t) =
−πv

µv
+

(
Sv(0) +

πv

µv

)
eµvt (4)

Also the sixth equation

dEv

dt
= λvSvIh − (α1v + µv)Ev

dEv

dt
≥ − (α1v + µv)Ev

Therefore we have

Ev(t) ≥ Ev(0)e
(α1v+µv)t (5)

Also the seventh equation

dIv
dt

= α1vEv − µvIv

dIv
dt

≥ −µvIv

Therefore we have
Iv(t) ≥ Iv(0)e

µvt (6)

2.2. Disease free equilibrium (DFE)
In other to determine the stability of the disease-free equilibrium
point, we first need to find the equilibrium points (DFE)
By equating the systems to zeros we have
Thus DFE of the SEIR-SEI model is given by

P0 =

(
πh

µh
, 0, 0, 0,

πv

µv
, 0, 0

)
(7)

2.3. Basic reproduction number

Let P and V be the non-negative matrix of the infection and the non-singular matrix of transition terms calculated atE0respectively

P =


λhShIv
0
λvSvIh
0

 (8)

V =


(α1h + µh)Eh

−α1hEh + (α2h + µh + δ)Ih
(α1v + µv)Ev

−α1vEv + µvIv

 (9)

Consequently , applying the next generation matrix PV −1 we have

PV −1 =


0 0 λhπh(α1v)

µh(α1vµv+µ2
v)

λhπh
µhµv

0 0 0 0
λvπv(α1h)

µv(α1h+µh)(α2h+µh+δ)
λvπv

µv(α2h+µh+δ)
0 0

0 0 0 0

 (10)

ρ(PV −1) =

√
λvλh(α1v)(α1h)πvπh

µvµh(α1h + µh)(α2h + µh + δ)(α1vµv + µ2
v)

(11)

R0 =

√
λvλh(α1v)(α1h)πvπh

µvµh(α1h + µh)(α2h + µh + δ)(α1vµv + µ2
v)

(12)

2.4. Stability of the disease free equilibrium (DFE)

We proof the stability of the disease-free equilibrium from the dynamic system by proving the following lemma
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Lemma 1. The disease-free equilibrium point of the system is locally stable if the reproduction numberRo < 1

dSh

dt
= πh − λhShIv − µhSh + σRh (13)

dEh

dt
= λhShIv − (α1h + µh)Eh

dIh
dt

= α1hEh − (α2h + µh + δ) Ih

dRh

dt
= α2hIh − (µh + σ)Rh

dSv

dt
= πv − λvSvIh − µvSv

dEv

dt
= λvSvIh − (α1v + µv)Ev

dIv
dt

= α1vEv − µvIv

J0(F ) =



−µh 0 0 0 0 0 −λh
πh
µh

0 − (α1h + µh) 0 0 0 0 λh
πh
µh

0 α1h − (α2h + µh + δ) 0 0 0 0
0 0 α2h −(µh + σ) 0 0 0
0 0 −λv

πv
µv

0 −µv 0 0

0 0 λv
πv
µv

0 0 − (α1v + µv) 0

0 0 0 0 0 α1v −µv


(14)

Let
λh

πh

µh
= m1 (α1h + µh) = m2µh + σ = µµv = η (α2h + µh + δ) = m3λv

πv

µv
= m4

(α1v + µv) = m5α1h = αα2h = γα1v = σ (15)

J0(F ) =



−µ 0 0 0 0 0 −m1

0 −m2 0 0 0 0 m1

0 α −m3 0 0 0 0
0 0 γ −µ 0 0 0
0 0 −m4 0 −η 0 0
0 0 m4 0 0 −m5 0
0 0 0 0 0 σ −η


(16)

Since we know that the eigenvalue λas stated under the ∣∣J(f0)− λE
∣∣ = 0


−m2 0 0 m1

α −m3 0 0
0 m4 −m5 0
0 0 σ −η

 (17)

λ4 + P1λ
3 + P2λ

2 + P3λ+ P4 = 0

P1 = η +m5 +m3 +m2

P2 = ηm5 + ηm3 + ηm2 +m5m3 +m5m2 +m3m2

P3 = ηm5m3 + ηm5m2 + ηm3m2 +m5m3m2

P4 = ηm5m3m2 − σm4αm1

P1 = η +m5 +m3 +m2

P2 = ηm5 + ηm3 + ηm2 +m5m3 +m5m2 +m3m2

P3 = ηm5m3 + ηm5m2 + ηm3m2 +m5m3m2

P4 = ηm5m3m2 − σm4αm1

(18)

P4 = µv(α1v + µv)(α2h + µh + δ)(α1h + µh)− α1v

(
λvπv

µv

)
α1h

(
λhπh

µh

)
(19)

= µv(α1v + µv)(α2h + µh + δ)(α1h + µh)

(
1− λvλhπvπhα1vα1h

µh(α2h + µh + δ)(α1h + µh)(α1vµv + µ2
v

)
(20)

= µv(α1v + µv)(α2h + µh + δ)(α1h + µh)(1−R2
0) (21)

Where

R0 =

√
λvλh(α1v)(α1h)πvπh

µvµh(α1h + µh)(α2h + µh + δ)(α1vµv + µ2
v)

Thus the eigenvalues of the model are real and negative if therefore the DFER2
0 is Locally Asymptotically stable.
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2.5. Stability of endemic equilibrium
In this section, we show the stability of the endemic equilibrium by proving the following lemma

Lemma 2. The endemic equilibrium of the dynamic model is globally asymptotically stable ifR0 > 1.

−(p1 + µh) 0 0 σ 0 0 −p2
p1 −(α1h + µh) 0 0 0 0 p2
0 α1h −(α2h + µh + δ) 0 0 0 0
0 0 α2h −(µh + σ) 0 0 0
0 0 −p3 0 −(p4 + µv) 0 0
0 0 p3 0 p4 −(α1v + µv) 0
0 0 0 0 0 α1v −µv


(22)

One eigen value= −µv which the remaining eigen values can be obtained from

−(p1 + µh) 0 0 σ 0 0
p1 −(α1h + µh) 0 0 0 0
0 α1h −(α2h + µh + δ) 0 0 0
0 0 α2h −(µh + σ) 0 0
0 0 −p3 0 −(p4 + µv) 0
0 0 p3 0 p4 −(α1v + µv)

 (23)

Therefore we get that the eigen values from the matrix are

(µh + σ), (α2h + µh + δ), (αh + µh), (24)
(αv + µv), (p4 + µv) and (p1 − µh)

Now, it is easy to see that Trace(M∗)<0

trace(M∗) = −p1 − 4µh − α1h − α2h (25)
− δ − σ − p4 − αv < 0

The Determinant

(M∗) = (−P1 − µh)(−αh − µh)(−α2h − µh − δ)
(−µh − σ)(−p4 − µv)(−αv − µv)

(26)

That isDet(M∗) > 0

According to Routh-Hurwitz condition, all eigenvalues of matrix
M* are real and negative if Trace (M*)<0 and Det (M*) >0. Thus
All eigenvalues are real and negative so the endemic equilibrium is
asymptotically stable and unstable ifR0 > 1.

2.6. Mathematical analysis of the model with control mea-
sures

Using Pontryagin’s MaximumPrinciple, we formulated an objec-
tive functional and present the existence of optimal control. Given
the optimal control problem, the objective functional J formulates
the optimization problem of identifying the most elective strate-
gies. The overall preselected objective involves the minimization
of the number of quarantined, exposed, infectious individuals and
the viral spread in the environment over a finite time interval [0,
T].

U = {(u1, u2) ∈ U}is Lebesgue measurable on [0,1], 0 ≤
ui(t) ≤ 1 ∈ [0, T ], i = 1, 2

We define the objective functional J, as follows:

J (u1, u2) =

∫ T

0

(
A1I +A2E +

1

2

(
B1u1

2 +B2u2
2)) dt

(27)

Subject to

dSh

dt
= πh − (1− u1)bβhShIv − µhSh + σRh (28)

dEh

dt
= (1− u1)bβhShIv − (α1h + µh)Eh

dIh
dt

= α1hEh − (α2h + µh + δ) Ih − u2Ih

dRh

dt
= u2Ih + α2hIh − (µh + σ)Rh

dSv

dt
= πv − βvSvIh − µvSv

dEv

dt
= βvSvIh − (α1v + µv)Ev

dIv
dt

= α1vEv − µvIv

Sh(0)> 0, Eh(0)> 0, Ih(0)> 0, Rh(0)> 0, Sv(0)> 0, Ev(0)>0
and Iv(0)> 0

In the objective function ?? is the final time and quantitiesA1,
A2are weights constants of the virus in the environment, infected
individuals, exposed individuals and quarantined respectively.

In other to achieve the objective of the control problem, we seek
the functions (u1

∗(t), u2
∗(t)) such that

J (u1
∗(t), u2

∗(t)) = min {J (u1, u2) , (u1, u2) ∈ U} (29)

2.7. Existence of an optimal control
Theorem 3. Given the objective functional J (u1, u2) as in (27) above,
where the control set U is measurable subject to with initial conditions
given at t = 0, then there exists an optimal controlu∗ = (u1

∗(t), u2
∗(t))

such that

J (u1
∗(t), u2

∗(t)) = min {J (u1, u2) , (u1, u2) ∈ U}

Proof. Due to the convexity of the integrand of J to control
measuresu1, u2, the priori boundedness of the solutions of both
the state and adjoint equations and the Lipchitz property of the
state system with respect to the state variables, then the optimal
control exist.

Now we need to show the optimal solution. To achieve this, we
need the Lagrangian (L) and Hamiltonian (H) for the optimal con-
trol problem.
The Lagrangian is given as

L = A1I +A2E +
1

2

(
B1u1

2 +B2u2
2) (30)
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Then the Hamiltonian function for the system is

H = A1Ih +A2Eh + 1
2

(
B1u1

2 +B2u2
2
)

+ΩSh [πh − (1− u1)bβhShIv − µhSh + σRh]
+ΩEh [(1− u1)bβhShIv − (α1h + µh)Eh]
+ΩIh [α1hEh − (α2h + µh + δ) Ih − u2Ih] +
ΩRh [u2Ih + α2hIh − (µh + σ)Rh]
+ΩSV [πv − βvSvIh − µvSv]
+ΩEV [βvSvIh − (α1v + µv)Ev] + ΩIv [α1vEv − µvIv]

(31)

where Ωj , j ∈ {Sh, Eh, Ih, Rh, Sv, Ev, Iv} are the disjoint vari-
ables.
Nowwe can apply the necessary conditions to the Hamiltonian (H).

Theorem 4. Given an optimal control u∗ = (u1
∗(t), u2

∗(t))and
a solution y∗ = (Sh

∗, Eh
∗, Ih

∗, Rh
∗, Sv

∗, Ev
∗, Iv

∗)of the cor-
responding state system, there exists adjoint variable Ωj , j ∈
{Sh, Eh, Ih, Rh, Sv, Ev, Iv}satisfying

dΩSh

dt
= [ΩSh [(1− u1)bβhIv − µh]− ΩEh [(1− u1)bβhIv]] (32)

dΩEh

dt
= −A2 + [ΩEh [(α1h + µh)]− ΩIh(α1h)]

dΩIh

dt
= −A1 + [ΩIh [(α2h + µh + δ) + u2]− ΩRh(u2 + α2h) + ΩSv (βvSv)− ΩEv (βvSv)]

dΩRh

dt
= [−ΩSh(σ) + ΩRh(µh + σ)]

dΩSv

dt
= [ΩSv (βvIv + µv)− ΩEv (βvIh)]

dΩEv

dt
= [ΩEv (α1v + µv)− ΩIv (α1v)]

dΩIv

dt
= [(ΩSh(1− u1)bβhSh)− ΩEh [(1− u1)bβhSh)] + ΩIv (µv)]

With transversality conditionsΩj , j(T ) ∈ {Sh, Eh, Ih, Rh, Sv, Ev, Iv}
Therefore the control function are given by

u1
∗ = min {1,max {0,Λ1}} ,

u2
∗ = min {1,max {0,Λ2}} , ,

u1
∗ = min {1,max {0,Λ1}} ,

u2
∗ = min {1,max {0,Λ2}} , ,

(33)

Where
Λ1 =

(ΩEh
−ΩSh

)λShIv

B1

Λ2 =
(ΩEh

−ΩSh
)Ih

B2

(34)

To determine the adjoint equation and the transversality condition, we make use of the Halmitonian H. we differentiate the Halmitonian
with respect to Sh, Eh, Ih, Rh, Sv, Ev, Iv . Then we have the adjoins equation to be

dΩSh

dt
= − ∂H

dSh
= [ΩSh [(1− u1)bβhIv − µh]− ΩEh [(1− u1)bβhIv]] (35)

dΩEh

dt
= − ∂H

dEh
= −A2 + [ΩEh [(α1h + µh)]− ΩIh(α1h)]

dΩIh

dt
= −∂H

dIh
= −A1 + [ΩIh [(α2h + µh + δ) + u2]− ΩRh(u2 + α2h) + ΩSv (βvSv)− ΩEv (βvSv)]

dΩRh

dt
= − ∂H

dRh
= [−ΩSh(σ) + ΩRh(µh + σ)]

dΩSv

dt
= − ∂H

dSv
= [ΩSv (βvIv + µv)− ΩEv (βvIh)]

dΩEv

dt
= − ∂H

dEv
= [ΩEv (α1v + µv)− ΩIv (α1v)]

dΩIv

dt
= −∂H

dIv
= [(ΩSh(1− u1)bβhSh)− ΩEh [(1− u1)bβhSh)] + ΩIv (µv)]

With transversality conditions Ωj , j(T ) ∈ {Sh, Eh, Ih, Rh, Sv, Ev, Iv}. To minimize the Halmitonian, H, with respect to the optimal
controls, we differentiate H with respect tou1, u2. We then obtain the solution by equating the results to zero. This gives the optimal
control required and applying the boundary condition of each of these controls, the solution becomes

u1
∗ = min {1,max {0,Λ1}} ,

u2
∗ = min {1,max {0,Λ2}} ,

u1
∗ = min {1,max {0,Λ1}} ,

u2
∗ = min {1,max {0,Λ2}} ,

Where Λ1 =
(ΩEh

−ΩSh
)λShIv

B1

Λ2 =
(ΩEh

−ΩSh
)Ih

B2
Proved.

(36)
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3. Numerical simulation
To observe the dynamics mathematical modelling of the spread
of malaria disease with control over time, numerical simulations
were done usingMATLAB (2018) software. Wemake use of the vari-
ables in Table 1 and the parameters given in Table 2 in simulation,
based on the data provided. Some values assigned to the param-
eters were derived from epidemiological literature while others
were estimated.

4. Discussion
In this paper, we formulated amathematicalmodel for the trans-

mission dynamics of malaria with two time-dependent control
measures. We first consider control parameters to be zero and
performmathematical analysis of the model. The analysis showed
that there exists a domain where the model is epidemiologically
and mathematically well-posed. Stability analysis of the model
showed that the disease-free equilibrium is locally asymptotically
stable if the reproduction numberR0 < 1. If R0 > 1, the unique
endemic equilibrium exist and is globally asymptotically stable.

We then consider the case of time-dependent control variable
fromwherewe formulated anoptimal control problemandderived
expressions for the optimal control for themalariamodel with two
control variables to minimize the number of malaria infections in
human. In the optimal control problem, the use of one control and
a combination of interventions can be explored to investigate and
compare the effects of control strategies onmalaria eradication for
different transmission settings. The analysis of the model showed
that the state and optimal control can be calculated using the opti-
mal system.

The findings showed that, for the epidemic-prone areas, the op-
timal control for reducing the infected human and mosquito pop-
ulation was the use of bed nets and treatment. Findings from each
graph are outlined as follows
Fig 2: The mathematical modeling dynamics of the SEIR-SEI model
considering only theHumanpopulation before intervention strate-
gies. From the graph, we observe that the susceptible rate reduces
very fast as people get exposed to the infection. However, people
can recover through natural immunity from the disease.
Fig 3: The mathematical modeling dynamics of the SEIR-SEI model
considering only the Mosquitoes population before intervention
strategies. Our observation showed that, without control strate-
gies in place, the mosquito population gets exposed within a short
time and hereby leads to infection.
Fig 4: shows the effect of control interventions on the Exposed hu-
man population. Varying the control measures (use of mosquito
net and treatment). We observed that the interventions of control
measures help to reduce the exposed population.
Fig 5: shows the effect of control interventions on the Infected hu-
man population. Varying the control measures (use of mosquito
net and treatment). We observed that the interventions of control
measures help to reduce the infected population.
Fig 6: shows the effect of control interventions on the Recovered
human population. Varying the controlmeasures (use ofmosquito
net and treatment). It was observed that the interventions of con-
trol measures help to increase the recovered population.
Fig 7: shows the effect of control interventions on the exposed
mosquito population. Varying the control measures (use of
mosquito net and treatment), we observed that the interventions
of control measures do not affect the exposed mosquito popula-
tion.
Fig 8: shows the effect of control interventions on the infected
mosquito population. Varying the control measures (use of
mosquito net and treatment), we observed that the interventions

Table 1: Description of variables in the system.

State
variables

Description

Sh (t) Susceptible Human
Eh (t) Exposed Humans
Ih (t) Infectious Human
Rh (t) Recovered Humans
Sv (t) Susceptible Human
Ev (t) Exposed Humans
Iv (t) Infectious Human

of control measures have no effect on the infected mosquito popu-
lation.
Therefore, it is observed that the control intervention is adequate
in reducing the rate of spread malaria infection in the human pop-
ulation.

5. Conclusion
The research work aims to explore the transmission dynamics and
optimal control of malaria infection. This study considered the ef-
fect of two optimal controls (Use of bed net and Treatment). nu-
merical simulations were done using MATLAB (2018) software. We
make use of the variables in Table 1 and the parameters given in
Table 2 in simulation based on the data provided. Some values as-
signed to the parameter were derived from epidemiological litera-
ture while others were estimated. The result from the numerical
simulations shows that interventions of control measures help to
increase the recovered population.
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Figure 2: Transmission dynamics of malaria infection ( Human population) over time.

Figure 3: Transmission dynamics of malaria infection (Mosquito population) over time.

Figure 4: Solution trajectories for Exposed human individuals with optimal control.

Figure 5: Solution trajectories for Infected human individuals with optimal control.



8 L. M. Erinle-Ibrahim et al.

Figure 6: Solution trajectories for Recovered human individuals with optimal control.

Figure 7: Solution trajectories for Exposed population with optimal control.

Figure 8: Solution trajectories for Infected mosquito population with optimal control.

Table 2: Symbols and Values of parameters used in the model.

Description of parameter Symbols Value
Recruitment rate (human population) πh 0.0043
Recruitment rate (Mosquito population) πv 0.0071
Probability of Infection b 0.39
Natural death rate for humans µh 0.0000472
Natural death rate of mosquitoes µv 0.0000472
Rate of progressive recovered human individual to the susceptible class σ 0.00274
Rate of progressive susceptible human individuals to the exposed class βh 0.000025
Rate of progressive susceptible mosquito individuals to the exposed class βv 0.000034
Rate of progressive Exposed human individuals to the infectious class α1h 0.08333
Rate of progressive Infected human individuals to the recovered class α2h 0.48
Rate of progressive Exposed mosquito individuals to the recovered class α1v 0.0845
Death Rate of humans caused by Infection δ 0.083
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