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Abstract
This paper presents an investigation of a steady magnetohydrodynamic (MHD) thin-film flow of a Carreau fluid down an inclined plane with
viscous and magnetic dissipation under slip boundary condition. The derived non-linear ODEs that govern the flow of both the velocity and tem-
perature profile were solved using perturbationmethod withMAPLE software. The impact of few parameters like Magnetic field (M), Brinkmann
number (Br), Gravitational force (G), and the slip parameter (β), on the velocity and temperature profiles were identified and demonstrated
graphically. The result shows that the velocity and temperature reduced significantly when the Magnetic field parameter increases and both
increases as the slip parameter β increases. As there is rise in the gravitational force G, the velocity diminishes while the temperature intensifies.
There was an increase in velocity and temperature circulation of the moving fluid due to the rise in the slip parameter, signifying enhanced heat
transfer by upward flow of the fluid. Increase in Brinkmann has no effect on the velocity of the fluid.
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1. Introduction

Fluids can be characterized into Newtonian andNon-Newtonian.
Newtonian fluids comply with Newton’s law of viscosity. Air and
water are Newtonian fluids. Isaac Newton’s equation of viscosity
illustrates the linear connection between the shear strain rate and
shear stress of a particular fluid. A Newtonian fluid has a non-
varying viscosity, zero shear rate and zero shear stress, that is, its
viscosity remains constant irrespective of the shear rate.

Non-Newtonian fluids such as Ketchup, paint, glue, tar, blood
etc. have their viscosity increased or decreased when shear stress
is applied. Dilatant fluid as one of the categories of non-Newtonian
fluid can be referred to as shear thickening since its viscosity in-
creases as the shear rate increases while that of pseudoplastic fluid
decreases. Carreau fluids are generalized non-Newtonian fluids in
which its thickness depend upon the shear rate.

Through Magnetic dissipation, the work done by the moving
thin-film fluid is transformed into thermal energy and with slip
condition, the flowing fluid particles move with respect to the sur-
face due to the effect of viscosity.

The impacts of mass transfer on Magnetohydrodynamic oscilla-
tory movement of Carreau fluid over a slanted permeable channel
affected by temperature was studied by [1], the effects of some pa-
rameters on the fluidmovementwere analyzed and obtained using
the perturbation method. An amplified fluid flow due to increased
energy and the generated heat and fluid movement reduced by in-
crease in chemical reaction parameters was observed.

The flowing of a Carreau fluid over a wall-driven angle consider-
ing Taylor’s classical paint scrapping problem as a framework with
velocity u was investigated by [2]. It was discovered that the shear
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rate is proportional to the detachment from the line of zero shear
and also for less than 2.2 rad corner angles and also the effects of
Carreau fluid in the far-field are significant.

The effects of non-constant viscosity on the flow of a responsive
fluid over a convective medium were studied by [3]. A series solu-
tion of modified decomposition method was used to solve the gov-
erning equation. The resulting graphs shows thatwith the increase
in the Frank-Kamenettski parameter, viscous heating parameter,
heat source parameter and the fluid temperature increase. Im-
provement in the motion of the fluid due to rise in the viscosity
and a decrease in the fluid motion with increase in thermal radia-
tion parameter values and convective cooling was also noticed.

A comparison resolution of time-dependent Magnetohydrody-
namic fluid film movement over an extending sheet with non-
constant physical properties was studied by [4]. The resulting non-
linear equation was solved analytically and numerically using ho-
motopy and shooting methods. Effects of some physical parame-
ters such as variable viscosity, Hartmann number, thermal conduc-
tivity, film thickness, and Prandtl parameter on the temperature
and velocity profiles were studied and the outcome shows that as
viscosity rises, the flow velocity reduces while the temperature in-
creases. Also, Hartmann number rises in value, the flow velocity
increases with no effect on the fluid temperature.

The existence of unlimited shear rate viscidness in the flow of
a steady two-dimensional Carreau fluid over a moving/stationary
wedge was investigated by [5]. The non-linear partial differential
equations (PDE) are solved numerically with Runge-Kutta method.
It was observed that there is rise in the fluid velocity and there was
reduction in the temperature field as the wedge angle parameter
increases.

Related to this researchwork, a steadyMHD thin filmmovement
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of Carreau fluid down a slipped-down smooth plane with viscous
and magnetic dissipation under slip boundary was carried out by
[6]. The derived equations were solved analytically using MAPLE
software and the effect of some physical parameters on the fluid
velocity and temperaturewere examined. The result indicates that
as the Magnetic field parameter M increases the velocity and tem-
perature reduces and both increases as the inclination angle pa-
rameter increases. As there is rise in the gravitational force, the
velocity decreases while the temperature increases.

The effect of heat generation and mass transfer on the flow of
Carreau fluid over a porous stretching medium with slip bound-
ary condition considering some physical parameters such as ap-
plied magnetic field, thermal radiation, cross diffusion and suc-
tion/injection effects was investigated by [7]. The resulting equa-
tions were solved numerically. It was discovered that Dufour and
Soret parameters regulate the generated heat and the mass trans-
fer rate. Also, the thermal boundary layer thickness was enhanced
by non-linear thermal radiation.

The consequence of heat transfers on Magnetohydrodynamics
oscillatory flow for Carreau-Yasuda fluid through a permeable
channel was examined [8]. Poiseuille flow and Couette flow geome-
tries were involved and solved by using the perturbation method.
It was observed that the effect of some identified constraints, such
as Weissenberg number, Darcy number, Reynold number, Peclet
number, Magnetic parameter, radiation parameter for the velocity
and recurrence of the oscillation are on the fluid movement illus-
trated using MATHEMATICA software.

The presence of PHF and PCF in the flow of a three-dimensional
strained viscid fluid was studied by [9]. Mathematical model was
derived with the effects of viscous dissipation, chemical reaction,
and Joule heating. The impacts of some parameters on velocity
distributions and temperature of the fluid were shown graphically.
An increase inmagnetic parameter, increases the temperature and
the concentration fields. Increase in the values of ratio parame-
ter reduces the temperature and the boundary layer thicknesses.
Prandtl number is a decreasing function and Eckert number is an
increasing function of the temperature.

Magneto Casson-Carreau fluid movement over a circular perme-
able tube with partial slip was studied by [10], a comparative anal-
ysis of two-dimensional heat transfer was considered and model
for the two fluids were formulated. The ordinary differential equa-
tions obtainedwere solved by KBM. It was observed from the result
that there is decrease in the velocity of both the Carreau and Cas-
son fluid due to increase in magnetic number and Casson fluid has
higher qualities contrasted with Carreau fluid in disparity of mag-
netic number.

The use of the general dispersion model in the dispersion of un-
steady solute in Non-Newtonian fluid movement in a pipe in the
presence and absence of wall absorption and reaction at the wall
of the tubewas investigated by [11]. Different non-Newtonian fluid
mockups were used. It was discovered that both the solute dis-
persion and flow velocity increases and also decreases with solute
concentration as Weissenberg number ‘We’ rises. Regular and ho-
motopy perturbation method were used to solve the subsequent
ODE. The result shows that both methods have the same outcomes
and increase inmagnetic field reduces the velocity distribution and
temperature circulation increases while as angle of inclination in-
creases, both the velocity and temperature distribution of the fluid
increases and also slip parameter is an increasing function of both
velocity and temperature distribution.

The flow of different electrically andmagnetic inducedMHD flu-
ids have been worked upon by many researchers. The progres-
sion of incompressible Carreau liquid between equal plates with
slip conditions [12]. The flow geometry was represented in a co-
ordinate system, and the non-dimensional problem was solved us-

Figure 1: A systematic diagram of the physical model.

ing analytical method. An increase in magnetic parameter with
velocity decrease function of radiation parameter and brinkman
number was observed. It was also found that there was increment
in the velocity and temperature distribution of the moving fluid
due to rise in the inclination of the plate, indicating enhanced heat
transfer by ascendant flowof the fluid. Dual solutions for themove-
ment of a non-Newtonian MHD Carreau fluid over the shrinking
surface using mathematical modeling of energy and mass transfer
were analyzed [13]. Dual solutions were obtained for all the param-
eters used and it was observed that both the concentration and
the temperature field showed same effect on both the solutions for
temperature ratio and the velocity ratio parameters.

In this work, we investigate the slip effect of MHD Carreau fluid
flow down an inclined surface with viscous and magnetic dissi-
pation. Perturbation method was used to solve the non-linear
ODE that governs the flow. The influence of each of the non-
dimensionless parameters on themomentum and the temperature
of the fluid and the convergence of the solution were shown graph-
ically.

Consider the MHD flow of a Carreau fluid with a uniform viscos-
ity down a surface that slopes at an angleαwith slip condition. The
constitutive equations are as follows:

s = µ(γ ̇)γ ̇ = µ∞ + (µ0 − µ∞)[1 + (Γγ ̇)a](n−1)/2 (1)

where ‘a’ is the Carreau parameter when it is equal to 2.
s -shear stress
γ ̇ - shear rate respectively
µ0 - zero-shear rate viscosity
µ∞-infinite shear rate viscosity
Γ - material time constant
n - power-law exponent region
The constitutive governing equations for themomentumand en-

ergy are:

∂S

∂y
− σB2

0u+ ρgsinα = 0 (2)

with boundary conditions:

u = βs at y = 0,
du

dy
= 0 at y = h (3)

and
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k
(∂2T )

(∂y2)
+ s

∂u

∂y
+ σB2

0u
2 = 0 (4)

with boundary conditions:

T = T0 at y = 0, T = T1 at y = h (5)
where β is the slip coefficient and s is the total stress tensor, k

and σ are the thermal and electrical conductivity of the fluid.
Substituting equation (1) into equation (2) - (5) and introduce

the following non-dimensionless
quantities ȳ = y

h
, x̄ = x

h
, ū = uh

µ0
, u = (ūµ0)

h
, p = (p̄h)

µ0
, p̄ =

(pµ0)
h

, T = (θ−θ0)
(θ0−θ1)

to yield

∂2u

∂y2
+

3

2
We(n− 1)

(
∂u

∂y

)2
∂2u

∂y
−Mu+G = 0 (6)

with boundary conditions

u = β

[
∂u

∂y
+

1

2
We(n− 1)

(
∂u

∂y

)3
]

at y = 0 and ∂u

∂y
= 0 at y = 1 (7)

∂2θ

∂y2
+Br

[(
∂u

∂y

)2

+We

(
∂u

∂y

)4

+Mu2

]
= 0 (8)

with boundary conditions

θ = 0 at y = 0 and θ = 1 at y = 1 (9)

where M =
σB2

0h

µ0
is the Magnetic parameter, G = ρg sin α h

µ0

is the Gravitational parameter We = λ2(1−σ)

h3 is the Weissenberg
number andBr = (µ3

0)
µ3
0

h2K(θ1−θ0)
is the Brinkman number.

2. Method
The numerical simulation was conducted using MAPLE 20. The

derived nonlinear PDEs that govern the flow of the fluid and the
heat transfer was solved using perturbation method by expanding
the solution in powers of a small parameter ε for both the momen-
tum and the temperature which are as follows:

Zero-order equation for the momentum and temperature

∂2u0

∂y2
−Mu0 +G = 0 (10)

with boundary conditions:

u0 − β
∂u0

∂y
= 0 at y = 0 and ∂u0

∂y
= 0 at y = 1 (11)

And this;

∂2θ0
∂y2

+Br

[(
∂u0

∂y

)2

+Mu2
0

]
= 0 (12)

with boundary conditions:

θ0 = 0 at y = 0 and θ0 = 1 at y = 1 (13)

First-order equation for the momentum and temperature

∂2u1

∂y2
+

3

2
(n− 1)

(
∂u0

∂y

)2
∂2u0

∂y2
−Mu1 = 0 (14)

with boundary conditions

u1 − β
∂u1

∂y
− 1

2
β(n− 1)

(
∂u0

∂y

)3

= 0

at y = 0 and ∂u1

∂y
= 0 at y = 1 (15)

And this;

∂2θ1
∂y2

+Br

[(
∂u0

∂y

)4

+ 2
∂u0

∂y

∂u1

∂y
+ 2u0u1

]
= 0 (16)

with boundary conditions

θ1 = 0 at y = 0 and θ1 = 0 at y = 1 (17)

Using finite difference method, the PDEs were reduced to ODEs
which were then solved numerically with the boundary conditions
using MAPLE commands.

Solving equations (10) and (12) with boundary conditions (12)
and (14) and equation (16) and (18) with boundary conditions (17)
and (19), the following momentum and temperature equations for
both the zeroth and first order were obtained:

Momentum equations

u0 = e
√

Myc10 + e−
√
Myc9 +

G

M
− β(

√
Me

√
Myc10 −

√
Me−

√
Myc9) (18)

u1 = a25

(
e
√
My

)3

+
(
a26 + c12 − β

√
Mc12 + a27y

)
e
√
My +

a28y + a29 + β
√
Mc11 + c11

e
√

My
+

a30(
e
√
My

)3 (19)

Temperature equations

θ0 = −1

4

a31e
2
√
My

M
− a32e

√
My

M
− a34e

−
√

My

M
− 1

4

a35e
−2

√
My

M
− 1

2
a33y

2 + c13y (20)

θ1 = − 1

16

a36e
4
√
My

M
− 1

4

a38e
2
√
Myy

M
+

1

4

a38e
2
√
My

M3/2
− 1

16

a37e
2
√

My

M
− a40e

−
√
Myy

M
− a39e

−
√
My

M
−

1

4

a42e
−2

√
Myy

M
− 1

4

a42e
−2

√
My

M3/2
− 1

4

a41e
−2

√
Myy

M
− 1

16

a43e
−4

√
My

M
− 2

9

BrGa23e
−3

√
My

M
−

2

9

BrGa21e
3
√
My

M
− a46e

√
Myy

M
+

2a46e
√
My

M3/2
− a45e

√
My

M
− 1

2
a44y

2 + c15y + c16 (21)
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where a1,a2,………,a46 andc1,c2,………,c16 are constant.
These equations were substituted with values to obtain both the

numerical and analytical results.

3. Results
Table 1 and 2 shows the exact and numerical solutions derived

for both the velocity (u) and the temperature (θ) profiles for val-
ues of the Magnetic field parameter M = 2 and M=4 when other
parameters remain constant. Values for other parameters such as
the Gravitational force G, Brinkmann number Br and the slip pa-
rameter were also derived for both the exact analytical result and
numerical solution. Table 2 shows the values for the velocity and
temperature of the moving fluid when affected by the physical pa-
rameters and there is an increase in the slip parameter β from 0.5
to 1.0

Table 1 and 2 illustrates the validity of the results obtained from
perturbation method and numerical method in MAPLE 20.

Comparing equations (18) - (21) of this presentwork to equations
(27) - (31) in [6], It was observed that by making the slip parameter
β=0 the same results were obtained for both slip and no slip bound-
ary conditions for and , which shows the validity of the whole test
and analysis.

Fig. 2 illustrates the influence of magnetic parameterM on the
velocity and temperature distribution of the fluid whenG = 2, n =
2, Br = 1 and ε=0.001. It was noticed from the graphs that both
the velocity and temperature decrease as M increases. The ef-
fects of increasing values ofM are to reduce the fluid velocity and
also reduce the thickness of the boundary layer. Then, with rise
in the magnetic field parameter, the rate of transportation will be
reduced as the fluid flows down an inclined plane.

Fig. 3 illustrates the graphical illustration of both the velocity
u and temperature θ distribution for different values of G. It was
observed from the graph that as the gravitational parameter G in-
creases, the temperature distribution intensifies and the velocity
declines.

Fig. 4 illustrates that the temperature distribution of the flow-
ing fluid rises as the Brinkman number intensifies while the
Brinkmann number does not have effect on the velocity distribu-
tion of the fluid.

Fig. 5 and Fig. 6 shows that as there is rise in the slip parameter
β, both the velocity and temperature of themoving fluid increases.

4. Conclusion
In this study, the MHD flow of a thin film fluid with viscous

andmagnetic dissipation down an inclined surfacewith slip bound-
ary conditions were examined and analyzed. Governing equations
were derived for both momentum and temperature. The influence
of some physical dimensionless parameters such as Magnetic field
(M ), Gravitational force (G), and Brinkmann number (Br), and
slip parameter (β) on both the velocity and temperature distribu-
tion were observed, computed and represented graphically. The
results derived from analyticalmethodwere validated numerically
using finite difference method. It was also discovered that:

-The temperature of the moving fluid drastically increases till it
converges at 1.0000 for both values of M=2 and M=4 and for the
slip parameter β from 0 to 0.5

-The velocity profile decreases as the magnetic parameter M
and the slip parameter βincreases with a maximum decrease of
0.141%

-The temperature distribution of the fluid increases when the
slip parameter increases with a maximum increase of 0.25%
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Table 1: Exact solution and numerical results in MAPLE 20 forM=2 andM=4 whenG = 2, n = 2,Br = 1, β= 0.5 and ε=0.001.

M=2 M=4
Exact solution Numerical results

using MAPLE 20
Exact solution Numerical results

using MAPLE 20
y u θ u θ u θ u θ

0 0.5702 0 0.5702 0 0.3394 0 0.3394 0
0.2 0.6622 0.2916 0.6622 0.2916 0.3900 0.2594 0.3900 0.2594
0.4 0.7271 0.5420 0.7270 0.5420 0.4227 0.4929 0.4227 0.4929
0.6 0.7701 0.7472 0.7720 0.7472 0.4429 0.6973 0.4420 0.6973
0.8 0.7946 0.9039 0.7946 0.9039 0.4538 0.8701 0.4538 0.8702
1 0.8026 1.0099 0.8026 1.0000 0.4573 1.0000 0.4573 1.0000

Table 2: Test for analytical and numerical results in MAPLE 20 forM=2 andM=4 whenG = 2, n = 2,Br = 1, ε=0.001, and β= 0.

M=2 M=4
Exact solution Numerical results Exact solution Numerical results

y u(y) θ(y) u(y) θ(y) u(y) θ(y) u(y) θ(y)

0 0 0 0 0 0 0 0 0
0.2 0.2134 0.2601 0.2142 0.2600 0.1571 0.2390 0.1574 0.2390
0.4 0.3643 0.4826 0.3653 0.4826 0.2590 0.4570 0.2593 0.4570
0.6 0.4644 0.6784 0.4653 0.6785 0.3219 0.6574 0.3222 0.6575
0.8 0.5214 0.8508 0.5223 0.8508 0.3561 0.8390 0.3563 0.8390
1 0.5399 0.9999 0.5408 1.0000 0.3669 1.0000 0.3670 1.0000

Figure 2: Effects of magnetic parameter on the velocity profile (a) and temperature profile (b).

Figure 3: Effects of gravitational parameter on the velocity profile (a) and temperature profile (b).
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Figure 4: Effects of Brinkmann number on the temperature profile.

Figure 5: Effects of slip parameter on the velocity profile.

[13] Ullah H, Khan M I & Hayat T, Modeling and analysis of
megneto-carreau fluidwith radiative heat flux: Dual solutions
about critical point, Advances in Mechanical Engineering, 12(8).
ISSN 1687-8140. https://doi.org/10.1177/1687814020
945477.

Figure 6: Effects of slip parameter on the temperature profile.
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Table 3: List of symbols and their meaning.

Symbols Meaning Units
S Shear stress: This occurs when a force

is applied to a material.
N/m2

γ ̇ Shear rate: The rate at which the fluid
is deformed by shear stress.

s−1

µ0 Zero shear rate: A fluid is at rest I.e no
deformation of the fluid.

0s−1

µ∞ Infinite shear rate: This occurs when
the fluid deformed at an extremely
high rate.

s−1

Γ Material time constant: It measures the
time taken for the fluid to relax or
respond to external forces.

S

n Power law exponent: This describes
the relationship between shear stress
and shear rate in non-Newtonian fluid.

None, because it is dimensionless

B0 Magnetic force: A force that interact
between magnetic field and magnetic
moment.

Newtons

β Slip parameter: Measures the degree of
slip or non-slip behavior between a
fluid and a solid surface.

Dimensionless

a Carreau parameter: This is used in
Carreau model to characterize the
behavior of non-Newtonian fluids.

S

α Inclined angle: It is a measure of the
angle between a surface and the
vertical or horizontal plane.

Degree ( 0 ) or Rad (rad)

Table 4: Key terms in fluid dynamics.

Terms Meaning Significance
MHD Magnetohydrodynamic It studies the interaction between

magnetic fields, fluids and the forces that
acted upon them.

G, g Gravitational force It attracts two objects with mass towards
each other.

M Magnetic field It describes the magnetic influence on the
moving electrically conducting fluid.

Br Brinkmann number It is used to characterize the deformation
of non-Newtonian fluids or used to predict
the onset of non-Newtonian behavior in
fluids.

PDE Partial Differential Equation This is used to model and analyze the fluid
flow using the Navier-stokes equations
(The continuity and the momentum
equation), Euler equations.

ODE Ordinary Differential Equation This is used to model and analyze the fluid
flow using Bernoulli’s equation

PHF Potential Heat Flow Measure the heat transfer rate between a
fluid and a surface.

PCF Porous Conductivity Factor Evaluate the flow resistance in a porous
medium

We Weissenberg number It’s a physical parameter used to determine
the behavior of the flowing fluid.

KBM Keller Box Method It is a numerical technique used by N
Nallagundla et al. to solve the derived
ordinary differential equation.
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