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Abstract
Mathematical modeling is crucial to understand the transmission dynamics of infectious diseases and to develop effective control strategies. In
this study, we introduce a compartmental SEIQR model (Susceptible-Exposed-Infectious-Quarantine-Recovered) that incorporates quarantine
measures to analyze the transmission dynamics of COVID-19 in Nepal. The next generation approach is used to compute the model’s basic
reproduction number. Themodel’s equilibriumpoints are obtained, and their stability is assessedwith the help of the basic reproduction number.
Sensitivity analysis is used to examine the importance and influence of the model parameters on the spread of disease.
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1. Introduction

Globally, infectious diseases have been on the rise. Mathemat-
ical models are vital resources for understanding the dynamics
of infectious disease transmission, forecasting future disease out-
breaks, and suggesting disease management measures. Infectious
diseases have thus been the subject of numerous mathematical in-
vestigations. Kermack and Mckendrick [1] proposed an SIR com-
partmentalmodel to study the transmission dynamics of infectious
diseases.

COVID-19, the recent pandemic, is an infectious disease caused
by the virus, which is known as Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2). In late December 2019, the
COVID-19 diseasewas first identified inWuhan, the capital ofHubei
province, China, causing the first pandemic of this century. The
WHO declared COVID-19 a global epidemic in the third month
of 2020 (the H1N1 influenza was previously declared a pandemic
in 2009) [2]. Many research works on its transmission dynamics
have been carried out in several countries, including Italy, the
United States, and China [3, 4, 5]. A couple of mathematical frame-
works have already been constructed to examine the spread of the
COVID-19 pandemic in India by considering the impact of interven-
tion techniques such as lockdown, social distancing, and economic
points of view [6, 7, 8, 9]. Chaterjee et al. [10] used a stochastic
differential equation model to investigate the COVID-19 transmis-
sion in India. Adhikari et al. [11] predicted the trend of the COVID-
19 pandemic. Bhuju et al. [12] investigated the transmission dy-
namics of COVID-19 through the SIR model. In their study, they
explored the behavior of the disease, determined the basic repro-
duction number, and conducted numerical simulations. Numerous
studies have explored themathematical modeling of infectious dis-
eases. This paper specifically focuses on integrating the impact of
quarantine within a SEIQR framework, particularly in the context
of Nepal.
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2. Method
The total human population at any given moment, represented

as N(t), is divided into five specific categories: the susceptible
group S(t), the exposed group E(t), the infected group I(t), the
quarantine group Q(t), and the recovered group R(t). It is as-
sumed that the overall population is changeable and mixed uni-
formly. This means that every individual has an equal chance of
contracting the infection when interacting with someone who is
infected. We incorporate both a birth rate γ and a death rate δ
for all the compartments. The behavior of the disease, considering
these factors, is determined by a specific set of differential equa-
tions, which are illustrated in the following flow diagram Fig. 1.
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where β represents the rate of transmission, σ refers to the rate at
which individuals who have been exposed become infectious, γI
denotes the recovery rate of those who are infected, δI signifies
the rate at which infected individuals are placed in quarantine, η
indicates the recovery rate for quarantined individuals, δ stands
for the natural mortality rate, and γ is the birth rate, andN = S+
E+ I+Q+R represents the total population. In the normalized
SEIQR model, we introduce the normalized variables, s = S

N
, e =

E
N
, i = I

N
, q = Q

N
, r = R

N
, whereN is the total population. The

sumof these normalized variables satisfies s+e+i+q+r = 1. The
behavior of the disease is characterized by the following system of
differential equations.
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Figure 1: Flow diagram of SEIQR model.

ds

dt
= γ − βsi− δs,

de

dt
= βsi− σe− δe,

di

dt
= σe− (γI + δI + δ)i, (2)

dq

dt
= δI i− ηq − δq,

dr

dt
= γI i+ ηq − δr

2.1. Basic reproduction number (R0)
The basic reproduction number refers to the typical number

denoting the average of new infections generated by a single in-
fected individual during their infectious period within a popula-
tion where everyone is susceptible to the infection [13]. To cal-
culate the basic reproduction number (R0), we examine the in-
fected compartments e, i, and q through the next generation ma-
trix method, which was initially introduced by Diekmann et al.[13].
This approach has been utilized because we have created a deter-
ministic model that is straightforward to apply and integrate, al-
lowing its use in a larger population for various infectious diseases
such as dengue [14].

F =

0 βs 0

0 0 0

0 0 0

 , V =

 σ + δ 0 0

−(σ + δ) γI + δI + δ 0

σ0 −(γIδI η + δ

 .

where F and V are the transmission and transition matrices, re-
spectively. In order to calculate the next generation matrix, we
calculate

V −1 =


1

σ+δ
0 0

σ
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1
γI+δI+δ

0
σδI
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δI
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
Given the transmissionmatrixF , we compute the next generation
matrix FV −1 as

FV −1 =


βσs

(σ+δ)(γI+δI+δ)
βs

γI+δI+δ
0

0 0 0

0 0 0



The basic reproduction numberR0 is defined as the largest eigen-
value of the matrix (FV −1), expressed mathematically as R0 =

ρ(FV −1). Here, ρ(FV −1) denotes the spectral radius of the next
generation matrix FV −1. Therefore, we establish the basic repro-
duction number as

R0 =
βσ

(σ + δ)(γI + δI + δ)

The system (2) has the following two biologically feasible equilib-
rium points:

2.2. Diseases free equilibrium point
The disease-free equilibrium is established when i = 0, q = 0,

and e = 0. This results in s = γ
δ
= 1 and r = 0. Consequently,

the disease-free equilibrium is represented as DFE(1, 0, 0, 0, 0).
The Jacobian matrix is given by

J =


−βi− δ 0 −βs 0 0

βi −(σ + δ βs 0 0

0 σ −(δI + γI + δ 0 0

0 0 δI −(η + δ) 0

0 0 γI η −δ


At DFE(s, e, i, q, r) = (1, 0, 0, 0, 0) the Jacobian matrix be-

comes

JDFE =


−δ 0 −β 0 0

0 −(σ + δ) β 0 0

0 σ −(δI + γI + δ) 0 0

0 0 δI −(η + δ) 0

0 0 γI η −δ


The eigenvalue corresponding to the Jacobian matrix at the DFE is
determined by the equation det(JDFE − λI) = 0, with I repre-
senting the square identity matrix. By solving the following char-
acteristic equation, the eigenvalues corresponding to the Jacobian
matrix in the DFE can be found.

det(JDFE − λI) = 0

where λ represents the eigenvalues.



Kathmandu University Journal of Science, Engineering and Technology, Vol. 19, No. 1, March 2025 3

The matrix JDFE − λI is

JDFE − λI =


−δ − λ 0 −β 0 0

0 −(σ + δ + λ) β 0 0

0 σ −(δI + γI + δ + λ) 0 0

0 0 δI −(η + δ + λ) 0

0 0 γI η −(δ + λ)

 (3)

det(JDFE − λI) = (−δ − λ)(−δ − λ)(−η − δ − λ)×
[
(σ + δ)(γI + δI + δ) + (σ + δ)λ+ (γI + δI + δ)λ+ λ2] = 0 (4)

Using the Routh-Hurwitz criteria method, the stability of the
system depends only on the expression (σ + δ)(γI + δI + δ) +
(σ + δ)λ + (γI + δI + δ)λ + λ2 = 0, which is in the form of
λ2 + α0λ + α1 = 0, where α0 = (σ + δ) + (γI + δI + δ) and
α1 = (σ+ δ)(γI + δI + δ)−σβ = 1−R0. The system is stable if
the eigenvalue is λ < 0, and this will happen only if α0 > 0 and if
α1 > 0. Here, α0 is positive, and the value of α1 is positive only if
R0 < 1. Thus, the disease-free equilibrium point is asymptotically
stable ifR0 < 1 otherwise unstable.

2.3. Endemic equilibrium point
The endemic equilibrium occurs when the disease persists in a

steady state in the population. Setting the derivatives in the nor-
malized SEIQR model to zero, we obtain the endemic equilibrium
values s∗, e∗, i∗, q∗, and r∗. From di

dt
= 0 and de

dt
= 0, we derive:

s∗ =
1

R0

e∗ =
δ(γI + δI + δ)

βσ
(R0 − 1)

i∗ =
δ

β
(R0 − 1) (5)

q∗ =
δδI
η + δ

(Ro − 1)

r∗ =
γIδ + η(γI + δI)

β(η + δ)
(R0 − 1)

At the endemic equilibrium, each compartment is directly influ-
enced by the basic reproduction numberR0. The susceptible popu-
lation is s∗ = 1

R0
, indicating that fewer individuals remain suscep-

tible whenR0 increases. The exposed e∗, infected i∗, quarantined
q∗, and recovered r∗ populations dependon (R0−1), whichmeans
that they only have positive values whenR0 > 1, which indicates
endemic persistence. Specifically, e∗ = δ(γI+δI+δ)

βσ
(R0 − 1) and

i∗ = δ
β
(R0 − 1) grow with increasingR0, reflecting an increased

burden of transmission and infection. Quarantine requirements in-
crease with q∗ = δδI

η+δ
(R0−1), emphasizing the need for isolation

to control spread. Meanwhile, r∗ = γIδ+η(γI+δI )
β(η+δ)

(R0 − 1) shows
that the number of recovered individuals increaseswith the spread
of the disease. Thus, reducing R0 below 1 through interventions
such as vaccination, quarantine, and public healthmeasures is crit-
ical to prevent endemicity and mitigate healthcare strain.

2.4. Sensitivity analysis
The sensitivity index of R0 with respect to each parameter θ is

calculated as [15, 16]:

Sθ
R0

=
∂R0

∂θ
× θ

R0

The sensitivity ofR0 can be explained by following table
Positive values of the sensitivity index describe that the cases of

the disease increase with the corresponding increase in the param-
eter values. Sensitivity indices of the parameters δ, γI and δI are

Table 1: Sensitivity indices ofR0 with respect to each parameter.

Parameter Sθ
R0

Baseline
value

Sensitivity
index

β 1 0.5 +1
σ δ

σ+δ
0.05 +0.144

δ − δ[γI+δI+σ+2δ]
(σ+δ)(γI+δI+δ)

0.1 -0.411
γI − γI

γI+δI+δ
0.0714 -0.226

δI − δI
γI+δI+δ

0.1 -0.507

negative. So, they contribute to decreasing the value of the basic
reproduction number and, so, contribute to decreasing the preva-
lence of the disease. Also, Table 1 shows that the transmission rate
β is positive and its sensitivity index is maximum, and the most
negative sensitive model parameter is the rate at which infected
individuals are quarantined.

3. Results and discussions

Graphical results are presented in order to observe the effects of
model parameters on the transmission of COVID-19 disease. The
following numerical values are used for the simulations: n = 0.9,
i = 0.1, β = 0.5, δ = 0.1, δI = 0.1, γI = 0.07, σ = 0.05,
σI = 0.07

Fig. 2 is simulated to investigate the spread of COVID-19 inNepal.
It is observed that the susceptible population decreases over time.
It is because susceptible populations get exposed due to interac-
tion with infected populations, and some of them die due to the
natural cause Fig. 1. The population in the exposed group initially
increases due to the interaction of the susceptible population with
the infectious population. Later, the exposed population moves to
the infectious class, showing the symptoms of the disease. So, the
population starts decreasing. The infectious host population de-
creases due to the recovery from the disease or quarantine, and
some due to death from natural causes.

We have simulated Fig. 3 to investigate the sensitivity of model
parameters. We see that the population size of infectious hosts is
increasing with the increased values of model parameters σ,and β.
Table 1 shows that the sensitivity indices for these parameters are
positive. Also, the parameters δ, γI and δI are contributing to de-
creasing the number of infectious people. These parameters have
negative sensitivity indices. Thus, it is observed that parameters
with a positive sensitivity index increase the disease transmission,
and the parameters having a negative sensitivity index contribute
to decreasing the transmission of the disease. The simulated re-
sults and Table 1 show thatβ,σ and δI aremore sensitivemodel pa-
rameters. β is themost positive sensitive parameter that increases
the transmission of the disease and δI is the most negative sensi-
tive parameter that decreases the transmission of the disease.
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(a) Dynamics of susceptible population. (b) Dynamics of exposed population.

(c) Dynamics of infected population. (d) Dynamics of recovered population.

Figure 2: Simulated dynamics of COVID-19 spread in Nepal.

4. Conclusion
In this work, we design and evaluate a deterministic ordinary

differential equation (ODE) model, called SEIQR, that describes
the dynamics of COVID-19. Our investigation allows us to iden-
tify and explore various equilibria within the model, and we thor-
oughly assess their local stability applying theRouth-Hurwitz crite-
ria. Our findings indicate that the disease-free equilibrium remains
locally stable when the basic reproduction number is less than 1.
If the DFE exceeds 1, it is unstable. The existence equilibrium is
only observed above the threshold value of 1. We observed that
the most important sensitive parameters are transmission rate β
(positive) and rate at which infected individuals are quarantined
δI (negative). Increasing transmission rate increases the transmis-
sion of the disease, and increasing rate of quarantine decreases
the transmission of the disease significantly. So, by increasing the
quarantine rate and decreasing the transmission rate, we can de-
crease the prevalence of COVID-19.
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(a) Effect of β onR0 . (b) Effect of σ onR0 .

(c) Effect of δ onR0 . (d) Effect of δI onR0.

(e) Effect of γI onR0 .

Figure 3: Sensitivity analysis of model parameters onR0.
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