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Abstract

This paper presents a comparative study of time series forecasting methods applied to Nepal Airlines passenger data, focusing on the ARIMA and
LSTM models. The study aims to analyze the forecasting performance of these models and identify the most accurate approach for predicting
future airline passenger numbers. The ARIMA model captures linear trends and seasonality, while the LSTM neural network is employed for its
ability to model complex patterns and non-linear relationships within the data. Both models are evaluated using standard performance metrics,
and the results provide insights into the strengths and weaknesses of each forecasting technique. The results indicate that ARIMA provided more
accurate forecasts with MAE: 0.74 and RMSE: 1.78, compared to LSTM having MAE: 0.87 and RMSE: 2.02, underscoring its suitability for datasets

with linear trends and seasonality.
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1. Introduction

Time series data forecasting provides a special set of challenges,
particularly in sectors like aviation where market dynamics and
economic swings are unexpected. Both preserving operational ef-
fectiveness and guaranteeing financial stability depend on accu-
rate forecasting. The nation’s first and primary airline, Nepal Air-
lines, is essential to both its economic growth and its ability to con-
nect to the outside world. Initially established as Royal Nepal Air-
lines Corporation in 1958, it operated with a single Douglas DC-3
Dakota aircraft, it initially served domestic destinations such as
Simara, Pokhara, and Biratnagar, along with Indian cities includ-
ing Delhi and Kolkata. Over the decades, Nepal Airlines expanded
its deft force to include turboprop engines and jet aircraft like the
Boeing 727 and 757. Despite its early recognition as a key player in
the South Asian aviation industry, the airline had a variety of oper-
ational challenges, including declining passenger volumes, unsta-
ble markets, and loss to its brand by service interruptions and in-
stability in the country.Regression analysis and other traditional
forecasting techniques may fail in dynamic and unpredictability.
These techniques are effective for simple correlations, but they are
unable to identify the complex and non-linear patterns that are
frequently found in real-life data. In order to improve forecast ac-
curacy, sophisticated methods such as ARIMA (Autoregressive In-
tegrated Moving Average) and LSTM (Long Short-Term Memory)
models have gained popularity.

Traditional methods for forecasting, including regression anal-
ysis, have lim- its in an unstable situation. The complicated and
non-linear patterns seen in real-world data are frequently missed
by these approaches. ARIMA (Autoregressive Integrated Moving
Average) takes trends, seasonality, and patterns into organized ac-
count, it is especially well-suited for evaluating time series data.
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ARIMA explicitly incorporates the impact of historical values and
relationships over time, in contrast to typical regression models
that assume linear correlations and frequently ignore time-based
dependencies. This increases its accuracy when working with data
that shows cycles or trends. Without manually adding lagged vari-
ables, which takes time and can result in overfitting, standard re-
gression models like linear regression are unable to handle such
complexities [1].

Additionally, ARIMA makes it easier to deal with stationarity
and autocorrelation problems that other regression models are un-
able to effectively handle. Because of these benefits, ARIMA is a
preferable option for modeling the passenger data from Nepal Air-
lines, which exhibits distinct seasonal and trend patterns. How-
ever, LSTM (Long Short-Term Memory), a kind of recurrent neural
network, is particularly good at identifying long-term patterns in
data and capturing complex non-linear connections.

The purpose of this study is to determine how effectively the
ARIMA and LSTM models forecast operational data for Nepal Air-
lines. Accurate projections are essential for making strategic de-
cisions, streamlining processes, and raising customer satisfaction
levels. This study is relevant because international air travel is
recovering from the pandemic and Nepal Airlines is working to
recover market share. Through the use of rigorous forecasting
methods, the study aims to compare the performance of tradi-
tional ARIMA model with LSTM model in a highly volatile sector.
The findings of this study have significant implications for Nepal
Airlines. Accurate forecasting using ARIMA can aid in optimizing
flight schedules, managing crew allocation, and improving inven-
tory control for high-demand seasons. Moreover, these insights
can inform marketing strategies to maximize passenger engage-
ment during peak periods, thus enhancing operational efficiency
and customer satisfaction.

Atime series is just a collection of observations arranged chrono-
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logically. Time series forecasting models forecast demand using
mathematical methods derived from data from the past. It is based
on the idea that the future is an extension of the past, which is why
we estimate future demand using historical data. Demand forecast-
ing using time series analysis has been the subject of numerous
studies in a variety of fields.

Gupta et al. [2] introduced an LSTM-based Recurrent Neural Net-
work(RNN) for predicting airline passenger numbers, highlight-
ing its ability to model long-term patterns better than linear sta-
tistical models like ARIMA. Using a four-step process data prepa-
ration, model building, training, and evaluation the approach
achieved MAPEs of 8.79% (training) and 10.8% (testing), outper-
forming methods like Holt-Winters and basic neural networks.

Panetal. [3] developed an LSTM-based model for daily airline de-
mand forecasting, leveraging horizontal time series for short-term
predictions and vertical time series for longer-term trends. By ad-
dressing limitations of traditional methods, the model achieved
89.11% accuracy for horizontal series and outperformed alterna-
tives like Support Vector Regression and Random Forest Regres-
sion. This dual-series approach proved effective for improving rev-
enue management in the airline industry.

Andreoni and Postorino [4] employed univariate and multivari-
ate ARIMA models to forecast air transport demand at Reggio Cal-
abria Airport, effectively handling non-stationarity with differenc-
ing and logarithmic transformations. The multivariate model in-
cluded variables such as per capita income and flight movements,
which enabled the assessment of the impact of airport policies and
fare changes. Both models provided reliable forecasts, with the
multivariate approach offering broader insights despite data lim-
itations.

Asrah et al. [5] compared time series forecasting methods for
Malaysia Airlines (MAS) and AirAsia, finding that AirAsia’s data fol-
lowed a Geometric Brownian Motion (GBM) process, while MAS
data required a Seasonal ARIMA (SARIMA) approach. Models
SARIMA(0,0,1)(1,0,0) and SARIMA(2,0,0)(0,1,1) were used for MAS
in 2009 and 2012, respectively, achieving MAPE values below 10%.
This study highlighted distinct passenger trends tied to the opera-
tional differences between the two airlines.

Siami-Namini et al. [6] examined the performance of ARIMA ver-
sus LSTM models for time series forecasting, with a focus on finan-
cial and economic data. With an average Root Mean Square Error
(RMSE) reduction of 84% to 87%, their study demonstrated that
LSTM models consistently outperformed ARIMA in error reduction.
The authors emphasized that while ARIMA relies on linear assump-
tions, LSTM’s ability to capture non-linear patterns and long-term
dependencies contributed to its superior performance. Addition-
ally, they observed that LSTM’s performance did not improve with
epochs greater than one, suggesting the potential for overfitting
in rolling forecast scenarios.

Zhang et al. [7] developed an LSTM-based model for short-term
stock price prediction using historical data from the Vanguard To-
tal Stock Market Index Fund (VTI) between 2018 and 2021. The
study compared the performance of LSTM against four other mod-
els: Linear Regression, eXtreme Gradient Boosting (XGBoost), Mov-
ing Average, and Last Value. The results showed that LSTM, with
an RMSE of 1.750 and MAPE of 0.633%, did not outperform sim-
pler models like XGBoost (RMSE 1.647, MAPE 0.593%) and Last
Value (RMSE 1.689, MAPE 0.598%). These findings highlighted that
LSTM'’s predictive capability was limited in short-term forecasting
due to the restricted prediction range and data size.

2. Methodology

The goal of this research is to compare the forecast number of
airline passengers based on past data, which consists of 192 obser-

vations of monthly passenger counts. The approach followed a sys-
tematic process involving data collection, cleaning, and the use of
ARIMA and LSTM to extract meaningful trends and patterns. Ad-
ditionally the section also explains the structures we used for the
LSTM model.

2.1. Data preprocessing

The raw dataset used in this study is the Nepal Airline Passen-
ger Dataset, consisting of 192 monthly records of passenger counts
from July, 2008 to June, 2024 . This data spans several years and
is structured chronologically, with each record representing the
number of passengers for a specific month. The dataset is univari-
ate, which focuses on one dependent variable, passenger-count
and the time column is used as the independent variable. This
data provides a rich context for understanding the seasonal trends
and periodic behavior of passenger travel, which are common in
transportation industries. However, the raw dataset contains some
challenges, such as missing values or irregularities, which are ad-
dressed in the data preprocessing step.

Before performing any analysis, it is critical to preprocess the
data to ensure accuracy and reliability. The preprocessing steps
include the following:

2.1.1. Handling missing data

Any missing values in the dataset were carefully inspected and
replaced using interpolation to maintain the temporal consistency
of the time series. Missing values in a time series can disrupt the
ARIMA model’s accuracy, so this step was crucial [8].

2.1.2. Outlier detection and stationarity check

Outliers were identified using box plots and visual inspection of
the data. In cases where significant deviations from the general
trend were detected, a decision was made to either smooth or ad-
just these outliers based on domain knowledge from the expertise
of the airlines company, and in some cases, by averaging the trend
of the data [9].

Outlier detection and Stationarity Checks were chosen as pre-
processing criteria because of their direct relevance to the require-
ments of the ARIMA model and the characteristics of the dataset.
ARIMA specifically requires a stationary time series to ensure the
reliability of its autoregressive and moving average components.
Stationarity, characterized by constant mean and variance over
time, is essential for accurate forecasting. Achieving this was a pri-
ority, and LogDiffShifting which is a combination of Logarithmic
Transformation and Differencing was selected due to its effective-
ness in stabilizing variance and removing linear trends.

While other preprocessing techniques, such as Exponential De-
cay Transformation, are viable alternatives, they are better suited
for data with exponential growth patterns, which were not ob-
served in the data of Nepal Airlines. Additionally, ARIMA does
not require the normality or homoscedasticity assumptions typi-
cally associated with general regression models, so these were not
considered. The focus on stationarity and outlier handling aligned
with the specific requirements of ARIMA, ensuring the model’s suit-
ability for the Nepal Airlines passenger dataset. Future studies
could explore alternative methods like Exponential Decay Trans-
formation to evaluate their efficacy in similar contexts.

2.1.3. Data analysis

To gain a better understanding of the data, data visualization of
passenger-count over time was done. This visual representation
highlights key components in the data, such as trend and season-
ality. The trend plot, as shown in Fig. 1 isolates the underlying
trend in the data. Over time, there is a clear upward trend, indicat-
ing a general increase in passenger counts. The rise between 2014
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and 2019 is particularly significant, showing that more people trav-
eled during this period due to some crucial marketing strategies
by airlines and buying two airbuses namely Airbus A330-200s [10].
However, after 2019, there’s a sharp decline around 2020, which
aligns with major global events like the COVID-19 pandemic. Sub-
sequently, a recovery begins after 2021. This plot effectively cap-
tures long-term shifts in travel behavior.

Similarly, the seasonality plot, as shown in Fig. 2 illustrates the
number of passengers over time, with clear patterns of peaks and
valleys that appear at regular intervals. These peaks likely corre-
spond to high-travel seasons, such as holidays and vacation peri-
ods. For example, the number of passengers surges in late 2019
and early 2020, which could reflect increased travel during win-
ter holidays. Similarly, there are sharp declines around the end of
early 2020 and mid-2021, possibly due to events like the COVID-19
pandemic that impacted travel demand significantly. This pattern
reveals a strong seasonal component in travel behavior, with pre-
dictable cycles of higher and lower demand throughout the year.
Understanding these trends is essential for travel-related indus-
tries, as it helps them prepare for busier periods and adjust opera-
tions to meet demand.

2.2. ARIMA model

The ARIMA model is a generalized model of Autoregressive Mov-
ing Average(ARMA) which combines Autoregressive (AR) process
and Moving Average (MA) processess and builds a composite model
of time series.The key elements of model are:

* AR: AR is the Autoregression model that uses the dependen-
cies between an observation and a number of lagged observa-
tions (p).

+ I:Integrated is used to make the time series stationaly by mea-
suring the diffrerences of observations at different time (d).

+ MA: Moving Average is an approach that tackels the depen-
dencies between observations and the residual error terms
when a moving average model is used to lagged observations

(@

Auto-regressive process (AR): The relationship between an obser-
vation and a specific number of lag observations is represented by
the AR component. The parameter (p), which indicates how many
lag words to include in the mode, defines it. Mathematically, the
AR(p) model is defined as [11]:

P
Xi=c+ quithi + €t (1)

i=1

where X is the actual value also known as stationary variable at
time ¢, ¢; are the auto correlation coefficients for each lagged ob-
servation of 1,2,...,(p), and ¢; is the residual also known as Gaussian
white noise series having mean zero.

Integrated process (I): A time series which is determined by the
cumulative effect of an activity belongs to the class of integrated
processes.The stationary of the differences series of an integrated
process is a critical characteristic from the perspective of statisti-
cal analysis. Time series integrated processes serve as a model for
non stationary series. The integrated component is responsible for
differencing the time series to attain stationary, eliminating any
trends or seasonality present in the data. The parameter d indi-
cates the number of differences needed to achieve stationary. The
differencing process can be expressed as [11]

Yi =X — Xi 1 (2)

where Y; is the differences series.

Moving Average (MA): The MA component models the relation-
ship between an observation and a residual error from a moving av-
erage model applied to lagged residuals. The current moving aver-
age value is the linear combination of the current disruption with
one or more which occurred on previous state. Mathematically,
the MA(q) model is defined as:

Xe=p+e+ 0161+ 0262+ -+ 0get—q (3)

where:

« X, is the value of the time series at time ¢,

* 1 is the mean of the series,

* ¢; is the white noise (error) term at time ¢,

* 01,02,...,0, are the coefficients of the model,

* €—1,€t—2,...,€6—_q are the lagged error terms, and

+ q is the number of lagged error terms (the order of the MA
model) [11].

2.3. ARIMA: parameter selection

Model identification: The ARIMA model has three components:
AR (Auto-Regressive), I (Integrated), and MA (Moving Average).To
identify the correct parameters for each, an Autocorrelation Func-
tion (ACF) and Partial Autocorrelation Function (PACF) were plot-
ted. The ACF indicated the appropriate lag for the MA component,
while the PACF suggested the lag for the AR component [1].

Order of differencing(d): Based on the Autocorrelation Func-
tion (ACF) and Partial Autocorrelation Function (PACF) plots, as
shown in Fig. 3, the data required one differencing operation to
become stationary, resulting in p = 2, d = 1, and ¢ = 2. Differ-
encing is applied as follows to achieve stationarity:

Adyz =Yt — Yt—d (4)

where A%y, represents the differenced time series, and d is the
number of times differencing is applied to make the series station-
ary [12].

Order of AR (p) and MA (q): The PACF and ACF plots (Fig. 3)
suggested an optimal AR order of 2 and MA order of 2, leading to
an ARIMA(2,1,2) model. The ACF helps determine the MA order (g),
while the PACF helps determine the AR order (p) [11].

Model fitting: After selecting the parameters, the ARIMA model
was fitted to the data. The model was trained on a portion of the
data, and forecasts were made for the remaining time points. The
parameters ¢1, ..., ¢pandbi,. .., 04 are estimated by minimizing
the residual sum of squares (RSS):

RSS = (y: — ) (5)
t=1
where y; is the observed value at time ¢, and ¢ is the predicted
value from the ARIMA model at time ¢ [13].

Residual analysis: Once the ARIMA model was fitted, the resid-
uals (the differences between the observed and predicted values)
were analyzed to ensure they followed a white noise pattern. If
the residuals showed no autocorrelation and followed a normal dis-
tribution, it confirmed that the model had captured the underly-
ing structure of the data effectively. The autocorrelation function
(ACF) of the residuals should be close to zero:

ACF.(h) = V(v ein) o

Vare) h=1,2,3,... (6

Additionally, the Ljung-Box test can be used to test for white
noise:
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>

)

Q=n(n+2)2Hj *(h)

h=1 n—h

where p(h) is the autocorrelation at lag h, n is the number of

observations, and H is the maximum lag for which the test is per-

formed. If Q is not significant, the residuals are considered to be
white noise [14].

Forecasting: Using the ARIMA model, forecasts were made for
future time periods, with confidence intervals calculated to esti-
mate the range of likely values. These forecasts were plotted along-
side the actual values, showing that the ARIMA model was able to
accurately capture both the trend and seasonal variations present
in the dataset. The forecast for time ¢ + h is given by:

P q
Jt+n = p+ Z iYtth—i + Z Oj€ttn—; ®)

i=1 =1

where gy, is the forecasted value at time ¢ + h and €, are
the residuals at time ¢ + h — j [15].

2.4.LSTM model

2.4.1. LSTM overview

LSTM network, introduced by Hochreiter and Schmidhuber
(1997), is a specialized form of Recurrent Neural network (RNN)
designed to capture long-range dependencies in sequential data,
addressing the vanishing gradient issue common in traditional
RNNs. This enhancement is achieved by employing “gates” that
control information flow, enabling the network to retain relevant
information over time and selectively update its internal state as
needed. This adaptability has established LSTMs as a prominent
choice in time-series forecasting, as they effectively capture both
short-term variations and long-term trends in data [16].

In this study, we leverage the LSTM model’s unique capabilities
to forecast monthly passenger counts for Nepal Airlines, aiming
to model the seasonal and trend-based fluctuations evident in the
dataset spanning 15 years. Given the sequential nature of the data,
LSTMs are particularly suited to modeling dependencies in both
seasonal peaks and troughs, as well as long-term growth patterns.

An LSTM cell is built upon several essential components that fa-
cilitate the management of information across time steps:

Cell state (c;): The cell state is the core memory of the LSTM
cell, responsible for preserving long-term dependencies across the
sequence [17]. Information flows along this cell state path, while
gates control modifications, allowing the cell to retain or discard
specific information as required [18].

Hiddenstate (h:): The hidden state is the output of the LSTM cell
at each timestep, encapsulating the cell’s immediate output and
short-term memory. This hidden state is used for generating pre-
dictions and is passed to the next timestep along with the updated
cell state [18].

Forget gate (f;): The forget gate determines which information
should be discarded from the cell state, based on the current input
and the previous hidden state. The forget gate is defined by the
equation:

fi=0W;s - [ht—1,x:] 4 bf) ©)

where o is the sigmoid function, W is the weight matrix, and
by is the bias vector [19].

Input gate (i;): The input gate decides which new information
should be added to the cell state. The gate generates two values:
the input gate vector and the candidate cell state. The equations
are:

it = 0 (Wi - [he—1, x¢] + bs) (10)

Et = tanh (Wc . [ht71, l‘t] -+ bc) (11)

The input gate vector controls the addition of the candidate cell
state to the cell state, introducing new information to the LSTM
cell [17].

Output gate (0;): The output gate determines the information
from the cell state that should be passed to the hidden state (h.) as
an output and as an input to the next timestep. It is calculated as:

ot =0 (Wo - [he—1, ] + bo) (12)

The hidden state is then updated using:
hi = o x tanh(c)

where o, allows selective output from the cell state to be passed
forward in the sequence [18].

2.5.LSTM operation in time-series forecasting

In the context of time-series forecasting, the LSTM model pro-
cesses each timestep sequentially, maintaining long-term depen-
dencies across multiple timesteps to learn both seasonal patterns
and trends. For our dataset of monthly airline passengers, the
LSTM leverages its sequential design to capture dependencies crit-
ical for understanding fluctuations, including peaks (e.g., during
holiday seasons) and troughs [16].

Input representation: Each monthly passenger count (z:)
serves as input to the LSTM cell at each timestep, enabling the
model to learn temporal dependencies by updating cell and hidden
states throughout the sequence [18].

Training: During training, the LSTM model optimizes its gates
to capture both long- and short-term trends in passenger counts.
This optimization process enables the model to develop a robust
understanding of seasonal variations and general trends in the
dataset [16].

Prediction: For forecasting, the LSTM model uses past values to
predict future passenger counts by leveraging the hidden and cell
states to generate forecasts for subsequent months [20]. By propa-
gating both cell and hidden states through the sequence, the LSTM
captures complex dependencies, offering advantages over static
models such as ARIMA, particularly in scenarios with non-linear
or highly variable patterns [21].

Through this architecture, the LSTM adapts its internal states
based on recent changes and long-term patterns in the data, mak-
ing it a strong choice for capturing seasonal and trend-based vari-
ations, as evidenced in airline passenger forecasting tasks [2].

2.6. LSTM model architecture and hyperparameters

The LSTM model architecture was designed to capture both
short-term and long-term dependencies in Nepal Airlines’ monthly
passenger data. The architecture comprises an input layer, two
LSTM layers, a dropout layer, and a dense output layer. We op-
timized the hyperparameters through grid search and evaluated
configurations based on performance on a validation set, prioritiz-
ing model stability and accuracy.

The final architecture consists of two LSTM layers, each with
50 units, with a dropout rate of 0.4 applied between the layers to
prevent overfitting. The dense output layer includes a single neu-
ron with a linear activation function for producing the final fore-
cast value. Hyperparameters such as batch size, learning rate, and
the number of epochs were selected based on empirical evaluation.
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Early stopping was also applied to terminate training when valida-
tion loss plateaued.

The hyperparameter values, detailed in Table 1, provided a good
balance between training efficiency and generalization on the test
set. This configuration enabled the LSTM model to effectively learn
complex patterns in the time series data, resulting in improved
forecast accuracy over baseline models.

Table 1: LSTM model hyperparameters.

Hyperparameter Value
LSTM units 50 (per layer)
Batch size 16
Learning rate 0.001
Dropout rate 0.4
Epochs 100
Loss function MSE
Optimizer Adam

3. Results and discussion

Nepal Airlines data was found to exhibit a trend and seasonality,
therefore differencing techniques were applied to make the data
stationary. The result of the Dickey-Fuller test is provided below:

Table 2: Results of the Dickey-Fuller test for stationarity.

Dickey-Fuller test results

Test statistic -1.276
p-value 0.640
Lags used 1
Observations 100
Critical value (1%) -3.50
Critical value (5%) -2.88

Critical value (10%) -2.57

In Table 2, the p-value 0.640 is much higher than typical signifi-
cance thresholds, such as 0.05 or 0.01. This means there is strong
evidence that the null hypothesis of the test, which suggests the
series is non-stationary, cannot be rejected. Furthermore, the test
statistic of -1.276 is much greater than the critical values at all sig-
nificance levels (1%, 5%, and 10%). If the test statistic were smaller
(more negative), we could have concluded that the series is station-
ary. Since it’s not, it indicates that the data likely exhibits non-
stationary. Thus, we have used LogDiffShifting approach, where
we combine Log Transformation and Differencing. Log Transfor-
mation is applied first to reduce the variability of the series and
stabilize variance. Differencing (with shifting) is applied afterward
to remove any trend or seasonality and make the series stationary
[22].

In Table 3, The calculated value of the Augmented Dickey-Fuller
(ADF) test statistic is -3.09. The associated p-value is 0.028, which
is less than the common significance levels of 0.05, indicating ev-
idence against the null hypothesis of non-stationarity. The test
used 1 lag to account for autocorrelation in the time series, and
it was performed on 100 observations. At the 1% significance level,
the critical value is -3.47, at the 5% level it is -2.88, and at the 10%
level it is -2.58. Since the test statistic -3.09 is more negative than
the critical value at the 5% significance level -2.88, we reject the
null hypothesis and conclude that the time series is now stationary
after log transformation and we move forward with ARIMA model.

Table 3: Results of the Dickey-Fuller test for stationarity after log transfor-
mation.

Dickey-Fuller test results (log transformed)

Test statistic -3.09
p-value 0.028
Lags used 1
Observations 100
Critical value (1%) -3.47
Critical value (5%) -2.88
Critical value (10%) -2.58

Furthermore, based on the comparative analysis of ARIMA and
LSTM models for forecasting Nepal Airlines passenger data, the re-
sults as shown in Table 4 demonstrate that the ARIMA model out-
performs the LSTM model. The evaluation metrics, including Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE), are
presented below:

Table 4: Performance metrics comparison.

Model Mean Absolute ~ Root Mean Squared

Error (MAE) Error (RMSE)
ARIMA 0.74 1.78
LSTM 0.87 2.02

The findings from the research show that ARIMA performed bet-
ter than LSTM at forecasting passenger numbers for Nepal Air-
lines. The better performance of LSTM was reported by Gupta et al.
(2019)[2], who obtained MAPEs of 8.79% and 10.8% for training and
testing data, respectively. The disparity might be explained by the
fact that Nepal Airlines’ data primarily exhibits seasonal and lin-
ear trends, which align more closely with ARIMA’s strengths. In
contrast, the dataset used by Gupta et al. favored LSTM, as it in-
cluded non-linear and long-term relationships. Additionally, the
smaller size of the Nepal Airlines dataset likely limited LSTM’s abil-
ity to generalize complex patterns effectively. Previous research
by Siami-Namini et al. (2018)[16] also highlighted LSTM’s chal-
lenges with limited data and potential overfitting in rolling fore-
casts, which is consistent with our findings.

For Nepal Airlines, ARIMA successfully captured the underlying
seasonal and trend components of the data, which supports find-
ings by Andreoni et al.[4]. Their study demonstrated that multi-
variate ARIMA models effectively forecast air transport demand by
capturing the interactions among multiple influencing variables,
leading to more accurate and comprehensive predictions. This
strength in forecasting has practical implications for airline opera-
tions and market strategy. Accurate forecasts from ARIMA enable
the optimization of flight schedules, ensuring resources are allo-
cated efficiently during peak travel seasons which is beneficiary for
the corporation like Nepal Airlines . The model’s insights can also
enhance inventory management and operational planning by help-
ing the airline prepare for fluctuations in passenger demand. Fur-
thermore, ARIMA forecasts can inform targeted marketing cam-
paigns to boost passenger engagement during low-demand peri-
ods, thereby supporting revenue growth and improving overall op-
erational efficiency.

4. Conclusion

The effectiveness of the LSTM and ARIMA models for predicting
Nepal Airlines passenger statistics is compared in this study. The



Kathmandu University Journal of Science, Engineering and Technology, Vol. 19, No. 1, March 2025 7

findings demonstrate that ARIMA is an effective approach for avi-
ation forecasting since it performs exceptionally well on datasets
with seasonality and linear trends. However, despite LSTM’s abil-
ity to handle intricate and non-linear patterns, the dataset’s size
and more straightforward structure restricted its performance.

The results have significant applications. In order to improve op-
erations and customer satisfaction, Nepal Airlines may use ARIMA
to build more accurate forecasts, which will help them optimize
flight schedules, manage resources effectively, and create better
marketing campaigns.

This study emphasizes how crucial it is to choose models that
complement the features of the dataset and the forecasting objec-
tives. By penalizing excessive parameters, metrics like AIC and
BIC, which balance model fit and complexity, could be used in fu-
ture research to improve the choice of ARIMA models. A promis-
ing method for utilizing both linear and non-linear patterns is to
combine ARIMA with LSTM. Furthermore, including outside fac-
tors like economic indicators could improve forecast accuracy and
offer a more thorough modeling framework.
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