
Kathmandu University Journal of Science, Engineering and Technology, Vol. 19, No. 1, March 2025

Study and implementation of modified ant colony optimization for
travelling salesman problem

Prashant Timalsina* and Aayush Shrestha

Department of Mathematics, Kathmandu University, Dhulikhel, Kavre, Nepal.

Abstract
The paper explores and visualizes a modified Ant Colony Optimization (ACO) algorithm to solve the Travelling Salesman Problem (TSP), imple-
mented in Python. The TSP, a classic optimization problem, requires finding a Hamiltonian path that visits each city exactly once and returns
to the starting point while minimizing the total distance travelled. Our approach introduces dynamic random thresholds for node selection and
fixed pheromone update, which adapts based on the algorithm’s performance. This probabilistic component enhances exploration and reduces
the likelihood of premature convergence, diverging from traditional ACOmethods. The implementation features an interactive, grid-based envi-
ronment where users can select nodes representing cities. The modified ACO algorithm iteratively identifies a local optimal Hamiltonian path by
simulating multiple generations of ant colonies, with customizable parameters such as the number of ants and generations. Key features include
real-time visualization of the best path found and dynamic pheromone updates. This paper provides a basis for further research into adaptive
evolutionary intelligence algorithms for optimization problems. It offers insights into applying ACO to find Hamiltonian paths in complex graphs.

Keywords: Ant colony optimization; Travelling salesman problem; Hamiltonian path; Evolutionary intelligence; Pheromone update.

1. Introduction
The Travelling Salesman Problem, introduced in the 1930s, grew

from amath puzzle to a key challenge in computer science [1, 2]. It
has spurred advances in algorithms and computation, evolving to
tackle larger problems while remaining a benchmark for optimiza-
tion methods [3].

The Travelling Salesman Problem (TSP) involves finding the
shortest route for a salesman to visit each city exactly once and re-
turn to the starting point. Despite its simple formulation, the TSP is
computationally challenging due to its NP-hard nature, making it a
benchmark problem for evaluating optimization algorithms. Over
the years, TSP has driven the development of exact and heuristic
methods, with applications in logistics, manufacturing, and theo-
retical computer science [4].

Ant Colony Optimization (ACO), proposed by Marco Dorigo in
the early 1990s [5], is a heuristic algorithm inspired by the forag-
ing behaviour of ants. ACO uses artificial “ants” to construct solu-
tions, guided by simulated pheromone trails that represent promis-
ing paths. These pheromones influence the construction of future
solutions, enabling iterative improvement. ACO has proven to be
an effective method for solving combinatorial optimization prob-
lems, including the TSP, and has found applications in areas such
as multi-objective and dynamic optimization [6].

An ant colony optimization algorithm is a problem-solving
method inspired by how ants find food, using computer-generated
“ants” to build possible solutions and leave virtual trails that help
guide future attempts to find the best answer to complex problems
[6].

The application of ACO to the TSP is well-suited due to their com-
plementary characteristics. In this context, artificial ants proba-
bilistically select cities to visit based on heuristic information and

*Corresponding author. Email: timalsinaprashant4@gmail.com

pheromone levels. Pheromone updates reinforce efficient routes,
allowing the algorithm to converge on optimal or near-optimal so-
lutions. This combination has facilitated progress in solving large-
scale TSP instances, demonstrating the utility of bio-inspiredmeth-
ods in addressing complex optimization problems [7].

2. Methods

The Ant Colony Optimization (ACO) algorithm is a metaheuris-
tic optimizationmethod inspired by the foraging behaviour of ants.
It has been widely used to solve combinatorial optimization prob-
lems, such as the Travelling Salesman Problem (TSP). This section
presents the implementation details of the ACO algorithm and dis-
cusses its modifications.

2.1. Ant colony optimization (ACO) algorithm

The Ant Colony Optimization (ACO) algorithm models ant be-
haviour to find optimal paths between nodes. It initializes
pheromone and distance matrices to represent trail intensity and
pairwise distances. Nodes are placed based on user input, and
distances are calculated. In each generation, ants explore paths
probabilistically, influenced by pheromone levels and distances.
Pheromone updates emphasize shorter paths while applying a de-
cay factor of 0.9 to balance exploration and exploitation. This pro-
cess iterates until the shortest path is identified and visualized.
Users can dynamically place nodes, with real-time updates to the
grid and visualization.

The original ACO algorithm for the Travelling Salesman Problem
(TSP) is provided in Algorithm 1, as outlined in [8]. Algorithm 2
incorporates the modifications detailed in Section 2.2.



2 P. Timalsina & A. Shrestha

2.2. Modifications

The modifications are as follows:

1. Dynamic threshold for node selection: During tour construc-
tion, a dynamic threshold increases if no valid next city is se-
lected, encouraging exploration and avoiding premature con-
vergence on suboptimal paths.

2. Random shuffling of node list: At each iteration, the available
city list is randomly shuffled for each ant, promoting diverse
exploration and reducing identical solutions.

3. Disabling revisits using the pheromone matrix: After a city is
visited, its pheromone values in both directions are set to zero,
preventing revisits and ensuring valid tours.

4. Best path selection and update: The shortest tour in each it-
eration is identified. If it surpasses the global best solution,
it becomes the new global best, ensuring consistent improve-
ment.

These modifications aim to balance exploration and exploitation
by diversifying the search process and improving computational
efficiency.

Algorithm 1 Original ant colony optimization for the travelling
salesman problem.
Require: GraphG = (V,E), distances dij , parametersm, ρ, α, β,

and termination criteria.
Ensure: Best tour Tbest and its length Lbest.
1: Initialize pheromone trails τij(t) for all arcs (i, j)with a small

positive value.
2: Placem ants randomly on cities in the graph.
3: Set iteration counter t = 0.
4: while termination condition is not met do
5: for each ant do
6: Start at a randomly assigned city.
7: Initialize memory (tabu list) to track visited cities.
8: while not all cities are visited do
9: Compute transition probabilities:

Pij =
[τij(t)]

α · [ηij ]β∑
k∈Allowed [τik(t)]

α · [ηik]β

10: Move to city j based on Pij and update tabu list.
11: end while
12: Complete the tour by returning to the starting city.
13: end for
14: for each ant do
15: Apply local search (e.g., 2-opt or 3-opt) to improve the

constructed tour.
16: end for
17: Update pheromone trails:
18: Evaporate pheromones:

τij(t+ 1) = (1− ρ) · τij(t)

19: Deposit pheromones based on ant tours:

τij(t+ 1) = τij(t+ 1) +
∑
ants

∆τij

20: Update best solution Tbest andLbest if a better tour is found.
21: Increment iteration counter: t = t+ 1.
22: end while
23: return Tbest and Lbest.

Algorithm 2 Ant movement for ACO.
1: Initialize the parr matrix with zeros to store ant paths and dis-

tances.
2: Create a list a containing nodes from 1 to POINT.
3: for each ant v in 1 to ANT do ▷ Simulate the movement of

each ant.
4: Copy the pref matrix to p_temp to track pheromone pref-

erences.
5: Set the current node i = 0 and initialize path lengthn = 0.
6: while n ̸= POINT − 1 do ▷ Visit all nodes except the last

return to start.
7: Randomly shuffle the list of nodes a.
8: Track if a new node was selected using n1, initialize a

threshold x = 0.
9: for each node j in a do

10: Generate a random number rand in range [5, x].
11: if p_temp[i][j]> 0 and p_temp[i][j]≤ rand then
12: Set parr[n+1][v] = j, the next node for ant v.
13: if n ̸= 0 then
14: Set p_temp[:,i] and p_temp[i,:] to 0 to dis-

able revisiting.
15: end if
16: Increment n by 1 and update the path cost:
17: parr[POINT+1][v] += dist[i][j].
18: Move to the next node: i = j.
19: Break the loop for node j.
20: end if
21: end for
22: Increase the threshold x by 10 to encourage explo-

ration if no node was selected.
23: end while
24: Close the loop for ant v by returning to the start node:
25: parr[n+1][v] = 0 and update the total path cost:
26: parr[POINT+1][v] += dist[i][0].
27: end for
28: Identify the ant with the shortest path:
29: l = parr[POINT+1][0], set m = 0.
30: for each ant k in 1 to ANT do
31: if parr[POINT+1][k]< l then
32: Updatem = k and l = parr[POINT + 1][k].
33: end if
34: end for
35: Update parr[: ,ANT] with the path of the best-performing ant.

2.3. Setup
The above algorithm is implemented using Python, with the

pygame library for graphical visualization and numpy for numer-
ical computations. As a proof of work for the algorithm, the fol-
lowing parameters and variables were initialized as an example, to
model theAnt ColonyOptimization (ACO) algorithm for solving the
Travelling Salesman Problem (TSP):

• Window dimensions: The application runs on a 700 × 700
pixel display.

• Grid dimensions: A 50 × 50 grid is used to facilitate spatial
representation of nodes.

• Constants:
– POINT: Number of points (nodes) to visit, initialized to 8.
– ANT: Number of ants in the simulation, set to 12.
– GENER: Number of generations, set to 9.

• Arrays:
– dist: A 8×8matrix storing pairwise Euclidean distances

between nodes.



Kathmandu University Journal of Science, Engineering and Technology, Vol. 19, No. 1, March 2025 3

– pref: A 8 × 8 pheromone preference matrix, initialized
with default values.

– parr: A 10 × 13 matrix to store paths and weights for
each ant.

• Grid and nodes:
– grid: A 50 × 50 grid of Box objects, each representing a

cell in the window.
– NOD: A list storing user-defined node locations.

2.4. User interface (UI)
The graphical interface was developed using pygame, allowing

users to interactively add nodes and visualize results. Key design
elements include:

• Color scheme:
– Grid cells are white by default.
– Nodes are displayed in red.
– Optimal paths are drawn in black lines.

• Controls:
– Left-click to add nodes.
– Press Spacebar to start the algorithm.
– Press C to clear the window.
– Press Backspace to reset the simulation.

• Text instructions: Instructions for user interaction are dis-
played on the top-left corner of the screen.

3. Results and discussion
This section of the paper presents the resulting execution of the

Algorithm 2 given the setup discussed in section 2.3.

3.1. User input interface
Fig. 1 demonstrates the user interface for node selection. The

interface provides an intuitive method for users to interact with
the Ant Colony Optimization (ACO) algorithm.

Figure 1: User interface for node selection.

3.2. Algorithmic visualization
The sections below prove the visualizations to provide insight

into how the algorithm processes spatial and pheromone informa-
tion to find optimal solutions.

3.2.1. Distance matrix
In one of the algorithm runs, we generated a sample distance

matrix, as illustrated in Fig. 2. This matrix represents the spatial
relationships between nodes.

Figure 2: Distance matrix for ACO algorithm.

3.2.2. Pheromone matrix
Fig. 3 presents the pheromonematrix corresponding to the same

run, showcasing the dynamic information exchangemechanism in
the ACO algorithm.

Figure 3: Pheromone matrix representation.

3.2.3. Path array
The final path array matrix for the run is depicted in Fig. 4, illus-

trating the solution trajectory of the algorithm.

Figure 4: Path array matrix.

3.2.4. Algorithm output
Fig. 5 and Fig. 6 showcase the algorithm’s output for different

random re-runs, demonstrating its adaptability and solution diver-
sity.



4 P. Timalsina & A. Shrestha

Figure 5: ACO solution for random re-run.

Figure 6: ACO solution for third re-run.

4. Conclusion
Our research yielded several significant findings:

• Successfully adapted the ACO algorithm to a grid-based rep-
resentation, enabling intuitive visualization and user interac-
tion.

• Developed a simplified computational model that preserves
the core principles of ACO while reducing algorithmic com-
plexity.

• Demonstrated the algorithm’s effectiveness in finding op-
timal or near-optimal solutions for user-defined Travelling
Salesman Problem (TSP) instances.

• Implemented real-time visualization of the algorithm’s
progress, enhancing understanding of ACO’s behaviour and
decision-making process.

Our implementation incorporates randomization and exploration,
using random shuffling of nodes to prevent deterministic path se-
lection. Also, it includes a basic pheromonedecaymechanism (mul-

tiplying by 0.9) which simulates the natural ant behaviour of rein-
forcing promising paths. For visualization and interactivity, we
used a Pygame-based interactive interface which allows manual
node placement and provides real-time visualization of path opti-
mization.

The implementation also has some limitations. The main
ones are algorithmic constraints like a fixed number of genera-
tions (GENER = 9), limited population (ANT = 12), and simplistic
pheromone update rule. Also, the algorithm lacks sophisticated
distance metrics and instead uses Euclidean distance squared.

The potential future enhancements can be to select more com-
plex path selection probabilities, incorporate local and global
pheromone update strategies, and develop more sophisticated
pheromone update rules.

Acknowledgements
We would like to express our gratitude to Dr. Prakash Poudyal,

for his consistent support and feedback throughout this paper. His
feedback and suggestions helped direct the paper to its completion.
Lastly, we would like to thank Kathmandu University, Kathmandu
University Mathematics Students Club, the Department of Mathe-
matics, the Department of Computer Science and Engineering, and
everyone else for their direct and indirect role in supporting us in
this paper.

References
[1] Katiyar S, Nasiruddin I & Ansari A Q. Ant colony optimization:

A tutorial review. In: National conference on advances in power
and control (2015), pp. 99–110. URL https://www.research
gate.net/profile/Sapna-Katiyar/publication/28143
2201_Ant_Colony_Optimization_A_Tutorial_Review/l
inks/5613da7308aed47facede845/Ant-Colony-Optimiz
ation-A-Tutorial-Review.pdf.

[2] Sangwan S, Literature review on travelling salesman problem,
International Journal of Research, 5(16) (2018) 1152. URL https:
//www.researchgate.net/publication/341371861_Lit
erature_Review_on_Travelling_Salesman_Problem.

[3] Dorigo M & Gambardella L M, Ant colonies for the travelling
salesman problem, Biosystems, 43(2) (1997) 73–81. https://do
i.org/10.1016/S0303-2647(97)01708-5.

[4] Laporte G, A concise guide to the traveling salesman problem,
The Journal of the Operational Research Society, 61(1) (2010) 35–40.
ISSN 01605682, 14769360. URL http://www.jstor.org/st
able/40540226.

[5] DorigoM, BirattariM&Stutzle T, Ant colony optimization, IEEE
Computational Intelligence Magazine, 1(4) (2006) 28–39. https:
//doi.org/10.1109/MCI.2006.329691.

[6] Blum C, Ant colony optimization: Introduction and recent
trends, Physics of Life Reviews, 2(4) (2005) 353–373. https:
//doi.org/10.1016/j.plrev.2005.10.001.

[7] Akhtar A, Evolution of ant colony optimization algorithm – a
brief literature review, arXiv preprint arXiv:1908.08007. URL ht
tps://arxiv.org/abs/1908.08007.

[8] Stützle T & Dorigo M. ACO algorithms for the traveling sales-
man problem. In: Evolutionary Algorithms in Engineering and
Computer Science: Recent Advances in Genetic Algorithms, Evolution
Strategies, Evolutionary Programming, Genetic Programming and In-
dustrial Applications (1999). URL https://faculty.washingt
on.edu/paymana/swarm/stutzle99-eaecs.pdf.

https://www.researchgate.net/profile/Sapna-Katiyar/publication/281432201_Ant_Colony_Optimization_A_Tutorial_Review/links/5613da7308aed47facede845/Ant-Colony-Optimization-A-Tutorial-Review.pdf
https://www.researchgate.net/profile/Sapna-Katiyar/publication/281432201_Ant_Colony_Optimization_A_Tutorial_Review/links/5613da7308aed47facede845/Ant-Colony-Optimization-A-Tutorial-Review.pdf
https://www.researchgate.net/profile/Sapna-Katiyar/publication/281432201_Ant_Colony_Optimization_A_Tutorial_Review/links/5613da7308aed47facede845/Ant-Colony-Optimization-A-Tutorial-Review.pdf
https://www.researchgate.net/profile/Sapna-Katiyar/publication/281432201_Ant_Colony_Optimization_A_Tutorial_Review/links/5613da7308aed47facede845/Ant-Colony-Optimization-A-Tutorial-Review.pdf
https://www.researchgate.net/profile/Sapna-Katiyar/publication/281432201_Ant_Colony_Optimization_A_Tutorial_Review/links/5613da7308aed47facede845/Ant-Colony-Optimization-A-Tutorial-Review.pdf
https://www.researchgate.net/publication/341371861_Literature_Review_on_Travelling_Salesman_Problem
https://www.researchgate.net/publication/341371861_Literature_Review_on_Travelling_Salesman_Problem
https://www.researchgate.net/publication/341371861_Literature_Review_on_Travelling_Salesman_Problem
https://doi.org/10.1016/S0303-2647(97)01708-5
https://doi.org/10.1016/S0303-2647(97)01708-5
http://www.jstor.org/stable/40540226
http://www.jstor.org/stable/40540226
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1016/j.plrev.2005.10.001
https://doi.org/10.1016/j.plrev.2005.10.001
https://arxiv.org/abs/1908.08007
https://arxiv.org/abs/1908.08007
https://faculty.washington.edu/paymana/swarm/stutzle99-eaecs.pdf
https://faculty.washington.edu/paymana/swarm/stutzle99-eaecs.pdf

	Introduction
	Methods
	Ant colony optimization (ACO) algorithm
	Modifications
	Setup
	User interface (UI)

	Results and discussion
	User input interface
	Algorithmic visualization
	Distance matrix
	Pheromone matrix
	Path array
	Algorithm output


	Conclusion

