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Abstract
In this paper, the enhancement of disease prediction accuracy for a limited dataset is explored. Text representation models such as ClinicalBERT
andTF-IDF vectorizer are utilized to generate text embeddings, which are thenpairedwith robust classification algorithms (estimators), including
Random Forest, XGBoost, and linear models like the Passive Aggressive Classifier. While embeddings of advanced text representation models
combined with robust classification algorithms are expected to yield satisfactory results, this research focuses on comparing two different text
representationmodels and how the text embeddings they generate performwhen combined with estimators in predicting diseases. Additionally,
the compatibility of text representation models with classification algorithms, and its impact on accuracy for disease prediction in the limited
dataset is examined.
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1. Introduction

The application of Natural Language Processing (NLP) [1] in
disease prediction began in the early 2000s, when computational
methods were first explored by the medical community to extract
valuable insights from unstructured medical data, such as clinical
notes and patient narratives [2]. Over time, advancements in com-
putational power and NLP techniques have facilitated the identifi-
cation of early disease markers and improved diagnostic accuracy
through the analysis of vast amounts of previously untapped clini-
cal text data [3].

A significant challenge in the medical field has been the under-
utilization of unstructured data, which often remains inaccessible
in free-text formats like doctors’ notes and patient narratives. In
the absence of NLP techniques, much of this critical information
goes unexamined, leading to less accurate diagnoses, treatment de-
lays, and inefficiencies in patient care [4].

Solutions such as ClinicalBERT or GPT-based models [4] are now
being employed to process unstructured data, identify symptoms,
and conduct predictive analyses based on patient narratives [5].
BERT [6] can be utilized as a feature extractor, where patient symp-
tom descriptions are converted into high-quality numerical rep-
resentations (embeddings) rather than being directly classified.
The embeddings generated by BERT capture the context, mean-
ing, and relationships between words in the text. By providing
dense, context-rich embeddings, BERT significantly enhances the
quality of input features for classification [7]. Conversely, TF-IDF
generates a sparse matrix representing the importance of words
within documents [8]. This hybrid approach [9] emphasizes the
strengths of text representation models in understanding natural
language and classification models in making accurate predictions
from structured data (text embeddings).

The work done on [7] is focused on fine-tuning ClinicalBERT and
assessing the quality of biomedical embeddings by analyzing cor-
relations between doctor-rated relationships and embedding simi-
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larity scores. In this research [9], an efficient multiclass model us-
ing XGBoost [10] has been established to help identify tumor ori-
gins in a data group comprising 10 types of tumor based on copy
number variations. The XGBoost classifier is then applied to these
10 types of cancer, achieving superior accuracy regardless of the
training datasets or the independent validation dataset by select-
ing 300 features, outpacing four other classifiers: KNN [11], DNN
[12], SVM [13], andAdaboost [14]. Furthermore, [15] examines tree-
based models [16] like XGBoost and RandomForest [17] for multi-
class classification involving Alzheimer’s disease (AD), normal cog-
nition (NC), and mild cognitive impairment (MCI). In addition, em-
bedded files from electronic health records are used to improve
prediction tasks. Embedding algorithms are increasingly utilized
to depict clinical concepts in healthcare, thereby improving ma-
chine learning tasks such as clinical phenotyping and disease pre-
diction. [18] This study introduces a pre-training scheme for lon-
gitudinal healthcare data, creating universal medical concept em-
beddings. The research systematically evaluates various models,
including tree-based methods across ten patient-level prediction
tasks. Findings indicate that integrating pre-trained embeddings
with tree-basedmodels enhances prediction accuracy in tasks such
as adverse event detection and disease risk assessment. [19] Med-
BERT adapts the BERT framework to structured EHR data, generat-
ing contextualized embeddings fromadataset of over 28millionpa-
tients. The study demonstrates that these embeddings, when used
with models like LightGBM [20], significantly improve disease pre-
diction accuracy, especially in scenarios with limited training data
. Although no specific literature was found on the application of
ClinicalBERT embeddings combinedwith estimators to predict var-
ious number of diseases, there is substantial evidence that the use
of embeddings with tree-based models may enhance the precision
of disease prediction [21].

This work focuses on comparing the performance of two text
representation models (ClinicalBERT and TF-IDF) in combination
with tree based models (Random Forest, XGBoost). They are evalu-
ated on differentmetrics [22] (Accuracy, Precision, recall, f1-score)
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for predicting diseases in our dataset. Additionally, a linear model
[23] (Passive Aggressive Classifier [24]) is employed to contrast the
performance of tree-based models with that of linear models. This
work mainly focuses on combining the advanced text representa-
tion model ClinicalBERT with robust classification algorithms to
see how it can enhance disease prediction for the limited dataset.
To show this comparison, TF-IDF, a traditional statistical method
is used, to evaluate how the rich contextual embeddings produced
by ClinicalBERT might outperform the traditional approach [25].

2. Materials and methods

2.1. Dataset
Free-text patient narratives containing symptoms. The dataset

[26] contains 4234 records and has over 141 disease categories. The
features of dataset are as follows.

• Unnamed: 0 – an index column that does not have analytical
significance.

• drugName – Name of the drug being reviewed.
• condition – Medical condition for which the drug was pre-
scribed.

• review – Textual review by a user about their condition and
experience with the drug.

• rating – Numerical rating (likely on a scale of 1-10) represent-
ing user satisfaction.

• date – Date when the review was posted.
• usefulCount – Number of times the review was marked as use-
ful by other users.

Among these features condition and review is focused for this work
as shown in Table 1. All the other features are dropped. Addition-
ally, in this dataset, Birth Control is included as a disease category,
so this is also removed. Hence, 140 disease categories are classified.
The distribution of data is given in Fig. 1.

Figure 1: Distribution of data.

2.2. Data preprocessing

2.2.1. Cleaning the data
Cleaning text is the first and crucial step in text preprocessing,

as raw text data can be noisy and contain irrelevant content. One

Table 1: Sample conditions and reviews.

Condition Review
Left
ventricular
dysfunction

“It has no side effect, I take it in
combination with Bystolic 5 Mg and
Fish Oil.”

ADHD “My son is halfway through his fourth
ek of Intuniv. After experiencing
significant mood swings with
stimulants, this has been an ansr to our
prayers.”

Birth control “I used to take another oral
contraceptive, which gave me constant
mood swings and ight gain. This one is
much better.”

Birth control “This is my first time using any form of
birth control. So far, I haven’t had any
issues except for minor headaches.”

Opiate
dependence

“Suboxone has completely turned my
life around. I no longer crave opioids,
and I feel like myself again.”

of the first things to address is removing HTML tags, , special char-
acters and symbols like (@, $, %), or even punctuation marks often
don’t contribute to the analysis and should be removed. Regular
expressions (regex) [27] can be utilized here to identify and elimi-
nate these characters.

2.2.2. Normalization
Normalization standardizes the text, ensuring that variations

in words or characters do not cause discrepancies during analy-
sis. The first step in this process is converting all the text to lower-
case. A key step in Normalization is Lemmatization [28]. Lemma-
tization uses a sophisticated approach, understanding the context
and grammar of the word to return a valid base form, like convert-
ing “better” to “good.” Tools like NLTK and SpaCy [29] provide
built-in lemmatization functions that apply these transformations
as shown in Fig. 2

2.2.3. Tokenization
Tokenization is the process of splitting text into smaller, man-

ageable pieces called tokens. These tokens can bewords, sentences,
or subword units. The most common form is word tokenization,
where the text is split into individual words. This helps models
process text by focusing on one token at a time. Tokenization can
be done using tools like SpaCy’s tokenizer [30].

2.2.4. Vectorization
After the text has been cleaned and tokenized, the next step is

to convert it into a numerical format that machine learning algo-
rithms can process. This is called vectorization [31], and it involves
transforming text into numerical representations such as word
counts, term frequencies, or dense word embeddings. The vector-
ization used is Term Frequency- Inverse Document Frequency (TF-
IDF).

2.3. Implementation of text representation models

2.3.1. Term frequency-inverse document frequency (TF-IDF)
TF-IDF is a way to figure out how important a word is in a docu-

ment compared to a bunch of other documents.

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D) (1)

• D: Collection of documents
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Figure 2: Normalized text.

• d: A certain document
• t: Term in document d

Term Frequency It checks how often a word shows up in one
document. Words that appear more often are considered more im-
portant.

TF(t, d) = Number of times term t appears in document d
Total number of terms in document d (2)

Inverse Document Frequency It looks at all the documents and
checks how common a word is. If a word appears in many docu-
ments, it’s considered less special or important.

IDF(t,D) = log
(

Total number of documentsD
Number of documents containing term t

)
(3)

First the dataset is tokenized into words. The frequency of each
word in document is calculated (Term Frequency), the Inverse Doc-
ument Frequency is calculated based on how frequently the word
appears across all the documents. The TF-IDF score is computed
as the product of TF and IDF for each word. The output is a sparse
matrix where each document is represented as a vector, with the
weight of each word indicating its importance to that specific doc-
ument [8].

2.3.2. ClinicalBERT
ClinicalBERT is a specialized version of the BERT model, fine-

tuned specifically for medical and clinical text. While standard
BERT is trained on general language data, ClinicalBERT focuses on
capturing the unique language used in healthcare settings, such
as electronic health records (EHRs), patient notes, and medical lit-
erature. ClinicalBERT recognizes “fever” and “high temperature”
hold the same meaning and place them close to each other [32].

The text data is tokenized and passed through the ClinicalBERT
model, it transforms the text into dense, contextualized embed-
dings that capture the semantic meaning of the medical text [7].
Mathematical representation of ClinicalBERT embeddings
LetT represent the sequence of tokens in a clinical text input, such
that:

T = {t1, t2, . . . , tn}

where n is the number of tokens.
Token embeddings Each token ti is converted into an embed-
ding ei ∈ Rd, where d is the embedding dimension (e.g., 768 for
the base ClinicalBERT model):

ei ∈ Rd

The embeddings are made by using 3 components :
ei = Word embeddings + Position embeddings + Segment embed-

dings.

Transformer layers ClinicalBERT applies a series of transformer
layersL1, L2, . . . , Lk , where k is the number of layers (e.g., 12 for
BERT-base). These layers are responsible for undestanding the re-
lationship between tokens and building a contextual representa-
tion of text . The hidden state at the l-th layer for token ti is rep-
resented as h(l)

i ∈ Rd:
h
(l)
i ∈ Rd

Contextual embeddings The output embeddings after the final
layer Lk for each token are the dense, contextually aware embed-
dings:

h
(k)
i = fk(ei, e1, e2, . . . , en)

where fk represents the transformer operations (multi-head atten-
tion and feed-forward layers).

Each layer addsmore context to the token embeddings, allowing
ClinicalBERT to capture subtle meanings in clinical context.
Pooled sentence embedding After passing through the final
transformer layer, [CLS] embeddings contain summary of entire
input text, based on the relationship and context learned by the
model. Often, the embedding for the special classification token
[CLS], denoted as h(k)

[CLS], is used as a dense representation of the
entire input text:

E = h
(k)

[CLS] ∈ Rd

This vector E serves as the final dense embedding for the input
text, summarizing its semantic and contextual meaning [33].

2.4. Implementing estimators

2.4.1. XGBoost (Extreme gradient boosting)
XGBoost is an ensemble learning method based on gradient

boosting, designed for high performance and efficiency. It builds
multiple decision trees sequentially, where each new tree corrects
the errors of the previous ones. The model minimizes a loss func-
tion using gradient descent while applying regularization tech-
niques to prevent overfitting.

The prediction in XGBoost is computed as:

ŷi =

K∑
k=1

fk(xi)

where fk(x) represents the output of the kth tree.
The objective function consists of two parts: a loss function L

that measures the model’s error and a regularization term Ω to
control complexity:

O =

n∑
i=1

L(yi, ŷi) +

K∑
k=1

Ω(fk)

XGBoost is widely used for structured data and provides high
accuracy while being computationally efficient [10].
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2.4.2. Random forest classifier
Random Forest is an ensemble learning technique that con-

structs multiple decision trees and combines their predictions to
improve accuracy and reduce overfitting. It follows the bagging
(Bootstrap Aggregation) method, where random subsets of data
and features are used for training each tree independently.

For classification, the final prediction is determined by majority
voting:

ŷ = arg max
N∑
i=1

hi(x)

where hi(x) represents the prediction from the ith tree.
Random Forest is effective for handling non-linear relationships

and is robust against overfitting due to its multiple decision trees
[17].

2.4.3. Passive-aggressive classifier
ThePassive-Aggressive Classifier is an online learning algorithm,

meaning it updates itself dynamically as new data arrives. Unlike
batch learning models, which train on the entire dataset at once,
Passive-Aggressive updates onlywhen itmakes awrong prediction.
Working:

• If themodel classifies an instance correctly, it remains passive
(no update).

• If the model misclassifies, it updates its weights aggressively
to correct the mistake.

The loss function used in Passive-Aggressive learning is:

L(w) = max(0, 1− yiw
Txi)

where:

• w is the weight vector,
• yi is the true class label (+1 or -1),
• xi is the feature vector.

When an error occurs, the model updates its weight vector as fol-
lows:

w = w + ηyixi

where η is the learning rate.
Passive-Aggressive Classifiers are particularly useful for real-

time learning tasks such as spamdetection, sentiment analysis, and
fraud detection [34].

2.5. Evaluation metric
The classification_report function from the Scikit-learn library

is a powerful tool for evaluating classificationmodels. It provides a
comprehensive summary of various performance metrics for each
class in a classification problem, including precision, recall, F1-
score, and support. Below is a detailed explanation of thesemetrics
and how to interpret the output of the classification report [22].

• Precision: Indicates the proportion of positive identifications
(model predicted class 1) which were actually correct. A
model which produces no false positives has a precision of 1.0:

Precision =
True Positives (TP)

True Positives (TP)+ False Positives (FP)

• Recall: Indicates the proportion of actual positives which
were correctly classified. A model which produces no false
negatives has a recall of 1.0:

Recall = True Positives (TP)
True Positives (TP)+ False Negatives (FN)

• F1-score: Harmonic mean of Precision and Recall:

F1-score = 2× Precision× Recall
Precision+ Recall

• Accuracy: The overall accuracy of the model across all classes.
• Support: The number of samples each metric was calculated
on.

• Macro avg: The average performance across classes without
considering class imbalance.

• Weighted average: The average performance across classes
that accounts for class imbalance by weighting each class’s
score by its support.

3. Results and discussion
The initial hypothesis suggested that combining advanced text

representationmodels with robust classification algorithmswould
yield satisfactory results. However, this was not the case. In fact,
the TF-IDF method as shown in Table 5, 6, 7 which is known for its
simplicity and efficiency but lacks contextual awareness, outper-
formed ClinicalBERT as shown in Table 2, 3, 4. Although Clinical-
BERT is designed to understand medical terminology and relation-
ships, the dense featurematrix it encodes is not suitable to usewith
tree-based estimators like RandomForest and XGBoost.

Despite the rich contextual embeddings produced by Clinical-
BERT, they are not ideal inputs for these estimators. Additionally,
when working with smaller datasets, complex models such as Clin-
icalBERT tend to underperform since they require large amounts
of data to fully utilize their context-aware capabilities. Further-
more, the distribution of data in the dataset is uneven, leading to
some disease categories having a limited number of patient nar-
ratives. BERT requires extensive fine-tuning and tree based mod-
els require hyperparameter tuning towork optimally which can be
computationally expensive and time consuming. While BERT em-
beedings capture semantic meaning but might not generalize well
for domain-specfic texts like patient reviews.

Surprisingly, TF-IDF outperformed ClinicalBERT because the
sparse matrix it produces is well-suited for linear classifiers, such
as the Passive Aggressive Classifier. Passive Aggressive Classifiers
are simple and efficient linear classifiers that work effectively with
sparse data like TF-IDF matrices. For smaller datasets, TF-IDF ap-
pears to generalize text better than ClinicalBERT. Passive Aggres-
sive Classifier is desgined for online learning, which makes it ro-
bust to class imbalance.

4. Conclusion
The result highlights that the choice of text representation and

classification algorithm must be properly aligned for optimal per-
formance. While ClinicalBERT provides rich semantic information,
its effectiveness depends on how well the classifier can leverage
that information. This explains why simpler models like TF-IDF,
when paired with a compatible classifier such as the Passive Ag-
gressive Classifier, outperformed ClinicalBERT + XGBoost in our ex-
periments. The accuracy of TF-IDF + Passive Aggressive Classifier
was 62.57%, while the accuracy of ClinicalBERT + XGBoost was just
25.5%. The low accuracy observed can be attributed to several fac-
tors. Certain disease categories have significantly more samples
than others, which may lead to a model biased towards the major-
ity class, thus resulting in poor performance on minority classes.
For instance, in the case of ClinicalBERT + XGBoost, high blood
pressure had only 4 samples. Furthermore, the patient narratives
often contain subjective language, potentially causing the model
to struggle in associating symptoms with diseases. Additionally,
the dataset is relatively small, with only 4,234 records across 140
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Table 2: Performance metrics for ClinicalBERT + XGBoost.

Disease / Metric Accuracy Precision Recall F1-score Support

ADHD 0.15 0.15 0.15 41
High blood pressure 25.5% 0.19 0.18 0.19 4
Migraine 0.27 0.19 0.22 21
Macro avg 0.09 0.07 0.08 –
Weighted avg 0.22 0.25 0.22 –

Table 3: Performance metrics for ClinicalBERT + passive aggressive classifier.

Disease / Metric Accuracy Precision Recall F1-Score Support

ADHD 0.44 0.29 0.35 41
High blood pressure 34.83% 0.50 0.50 0.50 4
Migraine 0.50 0.52 0.51 21
Macro avg 0.13 0.11 0.11 –
Weighted avg 0.37 0.35 0.33 –

Table 4: Performance metrics for ClinicalBERT + random forest.

Disease / Metric Accuracy Precision Recall F1-Score Support

ADHD 0.30 0.22 0.25 41
High blood pressure 30.22% 0.20 0.04 0.06 4
Migraine 0.40 0.15 0.22 21
Macro avg 0.11 0.08 0.07 –
Weighted avg 0.26 0.30 0.22 –

Table 5: Performance metrics for TF-IDF + XGBoost.

Disease / Metric Accuracy Precision Recall F1-Score Support

ADHD 0.87 0.77 0.82 35
High blood pressure 57.68% 0.62 0.67 0.64 27
Migraine 0.86 0.78 0.82 23
Macro avg 0.30 0.25 0.26 –
Weighted avg 0.56 0.58 0.55 –

Table 6: Performance metrics for TF-IDF + passive aggressive classifier.

Disease / Metric Accuracy Precision Recall F1-Score Support

ADHD 0.83 0.86 0.85 35
High blood pressure 62.57% 0.65 0.63 0.64 27
Migraine 0.83 0.83 0.83 23
Macro avg 0.44 0.41 0.41 –
Weighted avg 0.60 0.63 0.60 –

Table 7: Performance metrics for TF-IDF + random forest.

Disease / Metric Accuracy Precision Recall F1-Score Support

ADHD 0.73 0.77 0.75 35
High blood pressure 58.68% 0.67 0.59 0.63 27
Migraine 0.81 0.91 0.86 23
Macro avg 0.32 0.25 0.26 –
Weighted avg 0.56 0.59 0.53 –
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categories, which hinders the classification model’s ability to gen-
eralize effectively. To enhance performance, ClinicalBERT can be
fine-tuned on the dataset to better adapt it to the domain-specific
text. Balancing the dataset through oversampling or undersam-
pling techniques could also help reduce the bias towards majority
classes. Some limitations of our current model include the limited
dataset size, impacting model generalization. Moreover, the deep
learning approach of ClinicalBERT requires high processing power,
consumes significant memory, and requires longer training times,
making simpler, more efficient models a better trade-off. Thus, if
the dataset is limited and imbalanced, TF-IDF + Passive Aggressive
Classifier serves as a strong baseline model.
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