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Abstract

Effective route scheduling is crucial for reducing both travel time and expenses, particularly in industries like transportation and travel. One
of the optimization methods known as the Travelling Salesman Problem (TSP), offers a useful structure for solving these issues, but because of
its NP-complete characteristics result in the need for significant computational resources to solve it perfectly.In this study, we provide a unique
approach to route optimization that makes use of a genetic algorithm (GA) and provides a heuristic approach which delivers almost optimal
solutions in reasonable time. The concept applied in our methodology minimizes the distance between various destinations within Kathmandu

Valley.
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1. Introduction

For generations, one of the core challenges of mathematics
and logistics has been the optimization of transportation routes.
French mathematician Gaspard Monge [1] explored the transporta-
tion problem from a geometric point of view and first formalized
it in 1781. The foundation for contemporary optimization tech-
niques was laid in the 1920s when Tolstoi [2] took a mathemati-
cal approach to the transportation problem, marking a significant
improvement . In the 1960s, Holland [3] made a significant con-
tribution to the industry by introducing genetic algorithms (GAs),
which offered a fresh method for using computers to solve chal-
lenging transportation problems. The Traveling Salesman Prob-
lem (TSP), which aims to determine the shortest path that makes
exactly a single stop in each city and then returns to the starting
point city, is one of the most well-known transportation optimiza-
tion problems. Despite its seeming simplicity, TSP is an NP-hard
problem that grows exponentially complex with the number of
sites [4]. Large-scale real-world applications make traditional so-
lution techniques not feasible, requiring more complex strategies
like genetic algorithms.

Inspired by the concepts of evolution and natural selection, ge-
netic algorithms are an effective tool for solving challenging op-
timization issues [5]. These algorithms operate by maintaining a
population of potential solutions, selecting the fittest individuals,
and applying genetic operators such as crossover and mutation to
evolve better solutions over successive generations. Even while
GAs need a lot more processing power than conventional paper-
and-pen methods, they are especially useful for complicated trans-
portation problems because of their capacity to manage numerous
fitness characteristics and large search space.

The Kathmandu Valley is experiencing fast urbanization and
population increase, which has made transportation issues more
complicated. Effective route optimization is crucial since the val-
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ley’s road system cannot handle the everyday mobility demands
of its more than 2.5 million inhabitants. Route design is a com-
plex optimization problem. The unique characteristics of the trans-
portation network in the Kathmandu Valley are frequently not suf-
ficiently addressed by conventional routing techniques. The use of
genetic algorithms to optimize routes inside the Kathmandu Valley
is examined in this study. Our approach is to produce useful, ef-
fective routes that take into account the dynamic nature of urban
traffic patterns.

In 2001, Chien et al. [6] presented a genetic algorithm (GA) ap-
proach for public transport route planning and design, emphasiz-
ing in producing a cost effective route. The algorithm begins by
creating an initial population of routes which are the possible so-
lutions. This is based on a predetermined population size, road
patterns in the service area of each route and estimating an ob-
jective value that represents all costs. Next, the algorithm selects
the route with the least cost. With this process a new population
is created to ensure overall quality in terms of cost. Additionally,
crossover and mutation operators are applied to create new routes,
replacing some old ones in the population. This iterative refine-
ment guarantees that the newly generated routes are progressively
more cost-effective than their predecessors.

In 2015, Herring and Eden [7] explored the use of evolutionary
algorithms for de novo molecular design under multi-dimensional
constraints. The authors emphasized the necessity of a large
search space for the effective implementation of evolutionary al-
gorithms. By leveraging the expansive search capabilities of GAs,
the study highlighted how these algorithms are well-suited for nav-
igating complex and vast solution spaces, ensuring the generation
of optimal results in molecular design.

In 2015, Rao and Hegde [8] conducted a literature survey on the
application of genetic algorithms (GA) to the traveling salesman
problem (TSP), introducing a novel crossover method aimed at pro-
ducing better tours. The study also highlighted the formation of
subtours, which share the same fitness value, as a critical step in
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the optimization process. These innovative operations, when com-
bined, demonstrated the potential to achieve improved solutions,
reinforcing the effectiveness of genetic algorithms in solving com-
plex optimization problems like the TSP.

In 2017, Hussain et al. [9] explored the traveling salesman
problem (TSP) using a genetic algorithm (GA) with a modified
cycle crossover operator. Their experiments compared various
crossover methods and revealed that all operators exhibited a simi-
lar performance pattern. Additionally, they observed minimal vari-
ation between the best, worst, and average values, indicating a con-
sistent performance across different crossover techniques in solv-
ing the TSP.

In 2019, Mohammed et al. [10] and in 2009, Wang et al. [11]
successfully applied genetic algorithms (GA) to address the vehicle
routing problem (VRP), albeit in different contexts. Mohammed
et al. focused on solving the VRP within a university setting, iden-
tifying optimal routes for vehicle transportation and demonstrat-
ing the GA’s effectiveness in optimizing routes, reducing costs, and
addressing inefficiencies. Their work highlighted the practical ap-
plicability of GAs in real-world VRP scenarios. Similarly, Wang
et al. enhanced the GA framework to tackle the VRP with break-
down vehicles, introducing improvements such as abbreviated cod-
ing length to streamline computations and improve solving effi-
ciency. Their advancements not only optimized the algorithm’s
performance but also underscored the potential of refined GA tech-
niques for handling complex and dynamic routing challenges. To-
gether, these studies showcase the versatility and robustness of ge-
netic algorithms in addressing diverse VRP scenarios.

2. Methodology
2.1. Traveling salesman problem

The mathematical model for the TSP can be expressed as [12]:
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2.2. Mapping TSP to GA

Traveling salesman problem aims to save costs while determin-
ing the quickest route through the specified destinations. The ap-
plication of a genetic algorithm enhances the solution to the TSP.
Generating the initial population for a traveling salesman chal-
lenge entails identifying every potential tour. Every chromosome
is a representation of the traveler’s journey. The cities to be vis-
ited are represented by each gene in the chromosome. The chro-
mosome’s length is always equal to the sum of all cities plus one.

2.3. Algorithm for GA [9]
1. Create an initial population of P chromosomes.
2. Evaluate the fitness of each chromosome.

3. Choose P /2 parents from the current population via propor-
tional selection.

4. Randomly select two parents to create offspring using the
crossover operator.

5. Apply mutation operators for minor changes in the results.
6. Repeat Steps 4 and 5 until all parents are selected and mated.
7. Replace the old population of chromosomes with new ones.

8. Evaluate the fitness of each chromosome in the new popula-
tion.

9. Terminate if the number of generations meets some upper
bound; otherwise, go to Step 3.

2.4. Terminologies

2.4.1. Encoding

Before applying the genetic algorithm to any problem, a method
is used to represent the chromosomes or the individual solutions
so that the computer can process it. This representation method is
called encoding. There are many approaches for encoding such as
Binary Encoding where the sequence of 0’s and 1’s are used to rep-
resent the genes, Value Encoding where the sequence of values is
used, Permutation Encoding where every chromosome is a string
of numbers and Tree Encoding where every chromosome is a tree
of objects or nodes. In our work here, binary encoding is used. Af-
ter the genetic algorithm operators are applied finally the results
are converted to the required format. This process is called Decod-

ing.

2.4.2. Initial population generation

The genetic algorithm starts by initialization of population. The
initial population is generated randomly by the algorithm. It will
encode all possible solutions for the problem. The initial popula-
tion can be of any size [7, 13].

2.4.3. Fitness evaluation

The fitness evaluation phase assigns a fitness value for each in-
dividual solution which is produced in the previous step. Based on
the user requirement the fitness value is calculated. In our work
we have used, F' = 1/ f [8] where ‘F” is the fitness value and ‘ f” is
the total path length of the individual. The fitness value shows how
fit the chromosome is. Here, the path length is calculated by using
the distance formula which assumes Earth to be a perfect sphere.

2.4.4. Parent selection

After fitness value is assigned to each population, a fit parent,
with the highest value, is selected as parents for further process-
ing. Elitism method, Tournament selection methodRoulette Wheel
method are some of the methods for parent selection [8]. Differ-
ent selection methods select a different parent. The next step is
CroSsOver process.

2.4.5. Crossover

This is the important stage in genetic algorithm. The crossover
phase takes two parents and combines them to produce a new child
solution, known as offspring. The offspring is fed to the next gen-
eration. There are different ways for crossover to happen. It can
be one point crossover, multipoint point crossover, ring crossover,
and so on [14].

2.4.6. Mutation

This step introduces some changes to the solution so that it can
generate new values to reduce duplicity of the solution and to pro-
duce better generations. Mutation can be done in many ways: flip
mutation, inversion mutation, interchanging mutation, uniform
mutation, and so on [15].
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Table 1: Coordinates of places around Kathmandu Valley.

Place Latitude Longitude
Pashupatinath (A) 27.71067554 85.3489966
Bouddha (B) 27.72211403 85.3620749
Swayambhunath (C) 27.71510075 85.29036648
Dakshinkali (D) 27.60774938 85.26347831
Nagarkot (E) 27.717096 85.50414549
Chandragiri (G) 27.66015984 85.14549196
Bhaktapur (H) 27.67234037 85.42846706
NamoBuddha (I) 27.57158121 85.58180087
Phulchoki (J) 27.57524835 85.40048634
Switzerland Park (K) 27.71959370 85.24442133
Kirtipur (L) 27.66338125 85.27473867
Budanilakantha (M) 27.76476718 85.36312542

3. Conclusion
3.1. Data collection

The data of latitude and longitude of the places near Kathmandu
Valley in Table. 1 was collected from Google [16].

3.2. Results

After plotting the latitude and longitude of the collected data
points, the plot was found as in Fig.1:
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Figure 1: Plot of the latitudes and longitudes.
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Figure 2: Output after 300 iterations.

The result of the first iteration was foundtobe A - C — G —
K—-L—-D—-M—B—1-—J— H — E,where the
total distance traveled was 228.7 km. After deriving output of the
implemented algorithm and recording the plot, the best shortest

path is obtainedas A -+ B - M - C - K - G - L —
D — J — H — E — I, as shown in Fig.2. Total distance is
obtained as 221.5 km. The distance was reduced by 3.15%. Finally,
the set of optimal solution was ensured by looking at the minimum
distance traveled using this route.

In the similar study in 2017, Mohammed et al. [10], used GA to
minimize the route within the university for two routes, and they
succeeded in reducing the path to be traveled by 8.5%. They are
however optimistic that this reduction can be more significant if
longer routes are taken for a longer period of time.
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