Kathmandu University Journal of Science, Engineering and Technology, Vol. 19, No. 1, March 2025

Kathmandu University

Journal of Science, Engineering and Technology

Cost-effective deep learning infrastructure with NVIDIA GPU

Aatiz Ghimire*®®¢, Shahnawaz Alam®, Siman Giri®, and Madhav Prasad Ghimire?

Central Department of Physics, Institute of Science and Technology, Tribhuvan University, Nepal.

®Herald College Kathmandu, University of Wolverhampton, United Kingdom,

¢School of Mathematical Sciences, Institute of Science and Technology, Tribhuvan University, Nepal.

Abstract

The growing demand for computational power is driven by advancements in deep learning, the increasing need for big data processing, and the
requirements of scientific simulations for academic and research purposes. Developing countries like Nepal often struggle with the resources
needed to invest in new and better hardware for these purposes. However, optimizing and building on existing technology can still meet these
computing demands effectively. To address these needs, we built a cluster using four NVIDIA GeForce GTX 1650 GPUs. The cluster consists of four
nodes: one master node that controls and manages the entire cluster, and three compute nodes dedicated to processing tasks. The master node is
equipped with all necessary software for package management, resource scheduling, and deployment, such as Anaconda and Slurm. In addition,
a Network File Storage (NFS) system was integrated to provide the additional storage required by the cluster. Given that the cluster is accessible
via ssh by a public domain address, which poses significant cybersecurity risks, we implemented fail2ban to mitigate brute force attacks and
enhance security. Despite the continuous challenges encountered during the design and implementation process, this project demonstrates how
powerful computational clusters can be built to handle resource-intensive tasks in various demanding fields.

Keywords: Deep learning infrastructure; Beowulf cluster; High-performance computing (HPC); GPU cluster architecture.

1. Introduction

Deep learning has become a cornerstone of modern artificial
intelligence, driving advances in various fields such as natural
language processing, computer vision, and autonomous systems.
However, training deep learning models often requires substan-
tial computational resources, which can be prohibitively expensive
for many institutions and researchers. Cloud-based GPU solutions,
while offering scalability, come with recurring costs and potential
data privacy concerns, making them less feasible for long-term or
resource-intensive projects [1, 2, 3].

High-performance computing (HPC) or Clusters is increasingly
shifting towards heterogeneous GPU-based systems, driven by the
growing demand for massively parallel computing in deep learn-
ing and scientific applications [4].With the exponential growth of
Al-driven research and simulations, traditional CPU-based archi-
tectures often struggle to keep up with computational demands.
GPUs, with their high throughput and parallel processing capabil-
ities, have emerged as a crucial component in accelerating tasks
such as model training, data analysis, and large-scale simulations.

Building an in-house, cost-effective deep learning infrastructure
offers a practical alternative to address these challenges. Local
clusters equipped with GPUs not only reduce operational costs
but also provide greater control over data and computational re-
sources. However, achieving a balance between performance, scal-
ability, and affordability remains a significant challenge, especially
for setups that use consumer-grade GPUs and standard hardware
components [5].

This study focuses on designing and implementing a cost-
effective deep learning cluster using readily available hardware

*Corresponding author. Email: hello@aatizghimire.com.np

and open source software. The objectives are to evaluate the fea-
sibility of such a system, address its limitations, and highlight
its potential for supporting computational research in resource-
constrained environments. Using locally available resources and
optimizing configurations, this study aims to contribute to the
growing demand for accessible and efficient Al infrastructure.

The Beowulf Raspberry Pi cluster has gained attention as an af-
fordable and scalable alternative for parallel computing applica-
tions. Various studies have explored its implementation, high-
lighting its potential for educational and experimental purposes
[6, 7, 8, 9, 10, 11]. While Raspberry Pi clusters provide a cost-
effective way to introduce students and researchers to distributed
computing concepts, their performance is limited due to the low
computational power of individual nodes. Furthermore, Raspberry
Pi lacks dedicated GPU acceleration, restricting its usability for
deep learning and large-scale parallel computing tasks. This limita-
tion makes it unsuitable for workloads requiring significant matrix
operations, such as Al model training.

Another notable low-cost alternative is the Odroid-XU4 board,
which offers more processing capability than Raspberry Pi. Stud-
ies have demonstrated its viability in HPC education and small-
scale computing clusters [12]. Odroid-XU4 features an ARM-based
architecture with multi-core processing, making it more efficient
for parallel computations than Raspberry Pi. However, similar to
Raspberry Pi, it lacks dedicated GPU support, making it impracti-
cal for deep learning tasks that heavily rely on GPU acceleration.
While software optimization can help mitigate some performance
constraints, these devices are not suitable for handling large-scale
Al and scientific computing workloads that demand high floating-
point performance.

Recycling old computers by integrating them into a Rocks clus-

2 A. Ghimire et al.

ter is another cost-efficient strategy for setting up HPC environ-
ments [13]. Many academic institutions have repurposed outdated
lab machines to build functional compute clusters, extending their
usability for scientific computing and parallel processing work-
loads [14]. However, these older systems often rely solely on CPUs
and lack modern GPUs, which are essential for accelerating deep
learning computations. This absence of GPU support significantly
limits their effectiveness in Al research and computational tasks
that require tensor operations. While CPU-based clustering can
still be useful for general-purpose parallel processing, it falls short
in performance compared to modern GPU-accelerated systems.

Despite the availability of low-cost solutions, pre-compiled DGX
0S, designed specifically for deep learning systems, does not sup-
port commodity hardware, restricting its deployment to special-
ized NVIDIA DGX systems [15]. The NVIDIA DGX systems, op-
timized for deep learning workloads, has been widely adopted
in Al research due to its integrated software stack and high-
performance GPUs [16, 17, 18, 19]. Unlike the previously men-
tioned hardware solutions, NVIDIA DGX systems is built with dedi-
cated NVIDIA GPUs, enabling high-speed parallel computations es-
sential for deep learning. However, its high cost makes it inacces-
sible for many institutions and researchers, pushing them to ex-
plore alternative, budget-friendly solutions that attempt to bridge
the gap between affordability and computational efficiency.

2. Materials and methods

On the hardware side, our aim was to maintain a minimal config-
uration to make use of commonly available computers in standard
computing labs. Our setup consisted of four computers equipped
with GPUs, connected via a switch using CAT6 Ethernet cables for
network communication. We assigned the four computers as Mas-
ter, C1, C2, and C3 nodes.

Switch
(Router)
Internet
(NAT)
Master C1 c2 c3
10.80.0.100 10.80.0.101 10.80.0.102 10.80.0.103

Figure 1: Cluster metwork configuration.

The basic configuration of our cluster is shown in the figure
above. The computers are connected to a switch using Ethernet
cables. Alternatively, a router can be used instead of a switch. One
port of the switch is connected to the internet, enabling remote
access to the cluster. We configured Network Address Translation
(NAT) to convert the cluster’s local private IP addresses (Master
node IP) into a global public IP address for internet accessibility.

Initially, we attempted to set up the cluster using Ubuntu Server
22.04.1. However, it required extensive package installations, had
higher configuration complexity, and lacked enterprise-level fea-
tures such as robust security, package stability, and infrequent up-
dates. To address these limitations, we switched to Rocky Linux
9.4, which provides RHEL features. We performed a clean installa-
tion of Rocky Linux on each cluster node and updated them to the

latest version. For simplicity in installation and cluster configura-
tion, we only set up the root user with same password and did not
create additional user accounts at this stage [20].

The next step was to configure static IP addresses, which are es-
sential for inter-server communication needed for tasks such as
SLURM, MPI, and data transfer. To achieve this, we used “nmtui”,
a Network Manager tool, to assign static IP addresses to the nodes,
as illustrated in Fig. 1.

To streamline communication within the cluster, we configured
the ’/etc/hostname’ file on all nodes. The host file maps IP ad-
dresses to hostnames, allowing us to use simple names instead
of IP addresses for communication. We assigned ’10.80.0.100” to
the master node and sequential IP addresses (e.g., '10.80.0.101’,
’10.80.0.102’, 10.80.0.103’) to the compute nodes ’c1’, c2’, and c3’.
Additionally, we updated the ’/etc/hostname’ file on each node to
define its hostname, ensuring consistent identification across the
cluster. This configuration simplifies node communication and is
essential for seamless cluster operations, including MPI, SLURM,
and other distributed tasks.

We installed the SSH package on all nodes to enable secure com-
munication within the cluster. To streamline operations, we con-
figured passwordless SSH, allowing quick and seamless login be-
tween nodes without requiring repeated password entry. This
setup simplifies administrative tasks and facilitates efficient exe-
cution of distributed processes across the cluster [21].

All logins to the cluster are routed through the master node,
which serves as the central point for user access and management.
The master node is equipped with all necessary software for pack-
age management, resource scheduling, and deployment, ensuring
efficient coordination and operation of the cluster. This central-
ized setup simplifies user management and resource allocation
across the cluster.

1% ssh root@lo.s80.0.160
root@l0.80.0,100" s password:

b b bt b bttt bt st bttt ittt bl

* *
* Welcome to Pluto Cluster *
- =
* Developed by: *
* Aatiz Ghimire, shahnawaz Alam, & Siman Giri i
e v e o e v v v o o o ok o ok o o e o ok o o o o ok o o o o ok i e o o o o o o o o e o o o o e o o e e e e o e
* Rocky Linux 9.4 (Blue Onyx) (RHEL) *
* x*
& *
* General Purpose Nodes: *
* 3 compute nodes with: *
* - 12 cores Intel(R) Core(TM) 15-10400F @ 2.98CHz *
* - 16 CB RAM *
* - 4 GB NVIDIA RTX 1650Ti *
* *
* Internal Network: 108Mb/s Ethernet Network *
* *
* SLURM 22.65 *
& *
* For a guide on Pluto Cluster: *
* https://pluto.heraldcollege.edu.np *
& *

For support: plutogheraldcollege.edu.np

dkdkktdidhhhhdh bbb h bbb td bbbt d bbbk hhhhhhh

& *
* In EVIDENCE: *
* - Please, use STORAGE® Folder for work! *

FEEREEFFTREET AT XTI TR EIETREX AT R AR AT AR AT R AR A I A AR A AT AR EX &

Figure 2: Cluster login screen via SSH.

To streamline software deployment across multiple nodes in the
cluster, we utilize pdsh, a parallel shell tool that enables simul-
taneous execution of commands. First, pdsh is installed on the

Kathmandu University Journal of Science, Engineering and Technology, Vol. 19, No. 1, March 2025 3

head node using dnf install -y pdsh, ensuring SSH access is con-
figured for passwordless authentication across all compute nodes.
With pdsh, software packages can be installed in parallel, signifi-
cantly reducing deployment time. For instance, executing pdsh -w
node[1-4] 'sudo dnf install -y package-name’ installs the required
software on all designated nodes simultaneously. This method
enhances administrative efficiency, ensuring consistency across
the cluster without manual intervention, making it well-suited for
high-performance computing environments running Rocky Linux
[22].

Additionally, maintaining time synchronization across the clus-
ter is crucial for job scheduling, logging accuracy, and distributed
computing. We achieve this by installing and configuring Network
Time Protocol (NTP) on all nodes. Using pdsh, NTP can be installed
in parallel with pdsh -w node[1-4] 'sudo dnf install -y chrony’. The
NTP service is then enabled and started with pdsh -w node[1-4]
’sudo systemctl enable -now chronyd’. The head node is config-
ured as the primary NTP server, while compute nodes sync their
time with it. This setup ensures clock consistency, preventing syn-
chronization issues that could disrupt HPC workloads and SLURM
job execution.

Similary, we installed MUNGE, which is a lightweight authen-
tication service essential for secure, token-based communication
between nodes in clusters. It simplifies user authentication, in-
tegrates seamlessly with job schedulers like SLURM, and provides
scalability and ease of maintenance across clusters, making it ideal
for efficient cluster management [23].

We added an additional 1TB of storage to the system to
accommodate large-scale dataset downloads and enable
long-term storage of results. The storage was mounted at
‘/mnt/storage0’ and bind-mounted to each user’s directory as
‘/home/username/storage0’. This setup allows users to access
the additional storage directly from their home directory, and we
recommend utilizing this location for data management [24].

We set up a Network File System (NFS) on ’/mnt/storage0’ to
enable efficient file sharing between the server and client nodes
in our cluster. The configuration involved installing the ‘nfs-utils*
package, creating shared directories with appropriate permissions,
and defining NFS exports in the ‘/etc/exports’ file. We configured
the firewall to allow NFS services and created mount points on the
client nodes. The NFS shares were mounted manually for testing
and configured in ‘/etc/fstab* for persistence after reboots. This
setup ensures secure and reliable file sharing across the cluster
[25].

We utilized FreelPA for centralized user management and syn-
chronization across all cluster nodes. FreelPA provided seamless
integration of user authentication and access control, ensuring
consistent user accounts and credentials throughout the system.
This streamlined administrative tasks, enhanced security, and sim-
plified user management in the cluster environment.

User management in HPC clusters requires a balance between se-
curity and ease of administration. While NIS is widely used in many
HPC environments due to its simplicity, it is considered less secure
than modern alternatives [26, 27]. FreeIPA, which integrates LDAP
and Kerberos, offers enhanced security and centralized authenti-
cation but is more complex to install and configure [28]. Our clus-
ter utilizes FreeIPA with LDAP to provide a robust identity manage-
ment system, ensuring secure user authentication and streamlined
access control. However, for clusters prioritizing ease of use over
security, NIS remains a simpler alternative despite its vulnerabili-
ties.

Slurm is an open-source workload manager designed for effi-
cient resource allocation, job scheduling, and queue management
in high-performance computing (HPC) clusters. To set up Slurm
in our cluster, we installed the necessary packages on all nodes

[root@login ~]# sinfo
PARTITION AVAIL TIMELIMIT NODES
normal* up infinite 3

STATE NODELIST
idle c[1-3]

Figure 3: Slurm command sinfo for listing cluster.

and configured the ‘slurm.conf" file to match our cluster’s specifi-
cations. The configuration file was distributed to all nodes, and
appropriate permissions were set for Slurm directories. On the
controller node, the Slurm controller daemon (‘slurmctld‘) was en-
abled and started, while the Slurm node daemon (‘slurmd‘) was ac-
tivated on all worker nodes. The installation was verified using
commands like ‘sinfo’ for cluster information and ‘srun‘ for test
jobs. This setup ensures efficient job scheduling and resource man-
agement, optimizing the performance of the cluster [23]. We con-
figured the master node to support computations but chose not
to use it for this purpose. Utilizing the master node for processing
tasks would add significant load to it, as it is already responsible for
managing multiple tasks, including job scheduling, resource alloca-
tion, and acting as the login node for multiple users. Prioritizing
these critical functions ensures the stability and efficiency of the
cluster.

At the time of setup, NVIDIA driver installation was not sup-
ported directly through the Rocky Linux package manager (dnf).
Therefore, we manually installed the driver using the ‘.run‘ file ob-
tained from the NVIDIA website. The GPU driver was installed first,
followed by the installation of CUDA to enable GPU-accelerated
computations in the cluster.

To enable GPU integration in SLURM, we configured the
‘slurm.conf" file to recognize GPU resources by adding the ‘Gres’
(Generic Resources) parameter. Each node was configured with its
specific GPU details, including type and count. SLURM’s ‘gres.conf*
file was updated accordingly, ensuring seamless allocation of GPU
resources to jobs. This setup allowed efficient scheduling and uti-
lization of GPUs across the cluster [29].

We installed Lmod, a Lua-based environment modules system,
to efficiently manage software environments in the cluster. Lmod
enables users to dynamically load, unload, and switch between dif-
ferent versions of software and their dependencies. Using Lmod,
we created module files for various versions of Python, PyTorch,
etc., allowing users to easily switch between them based on their
project requirements. After installation, we configured the mod-
ule files directory and integrated Lmod with the shell environ-
ment by updating the system’s profile files. This setup, powered by
Lua scripting for custom module configurations, ensures flexibility
and simplicity in managing diverse software stacks, optimizing the
cluster for various computational workflows [30].

We configured Lmod and Lua on all cluster nodes to ensure
consistent environment management and seamless job execution
across the cluster. Lmod and Lua were installed on each node, and
module files were synchronized using a shared directory accessi-
ble to all nodes. The shell environment on each node was updated
to load Lmod and set the appropriate ‘MODULEPATH". This setup
ensures that all nodes can access the same software environments,
allowing SLURM to execute jobs reliably and efficiently with the
required configurations.

To further streamline software management, we integrated
EasyBuild, an automated framework for building and managing
software installations in HPC environments. EasyBuild simplifies
the process of compiling and installing complex scientific software
by handling dependencies and environment configurations auto-
matically. By using EasyBuild alongside Lmod, we generated mod-
ule files dynamically, ensuring that all installed software could
be easily managed within the cluster’s module system. This ap-
proach reduces manual configuration efforts while maintaining re-

4 A. Ghimire et al.

Cluster Installation Flowchart

Hardware Setup.

.................

.........................

............................

Figure 4: Deep learning cluster installation flowchart.

producibility and consistency across all nodes. Additionally, Easy-
Build allows us to install optimized versions of libraries and appli-
cations, improving performance for computational workloads [31].

While our cluster primarily utilizes EasyBuild, Spack [32] is also
apowerful and flexible alternative for software deployment. Spack
enables users to install multiple software versions and manage de-
pendencies efficiently, offering a more modular approach than tra-
ditional package managers. Its extensive package repository and
customizable builds make it a preferred choice for many HPC envi-
ronments. Although we opted for EasyBuild due to its structured
installation and seamless module integration, Spack remains an ex-
cellent choice for clusters requiring greater flexibility in software
management.

We installed Anaconda in a shared directory accessible across
the cluster and integrated it with Lmod for dynamic environment
management. A custom Lmod module file was created to configure
Anaconda, setting environment variables like ‘PATH' for seamless
activation. Using the shared directory, all cluster nodes can access
the Anaconda installation, enabling users to load and unload Ana-
conda dynamically through Lmod. This centralized setup allows
users to create isolated Conda environments, which can be loaded
as part of SLURM job scripts, ensuring consistent software environ-
ments for diverse computational tasks across the cluster.

We installed multiple versions of Python alongside Anaconda in
a shared directory to provide flexibility for various computational
tasks. Each Python version was configured with its own Lmod mod-
ule file, allowing users to dynamically load the desired version
as needed. These Python modules, like Anaconda, are accessible
across all cluster nodes via the shared directory. Users can load
specific Python versions using Lmod commands and utilize them
in SLURM job scripts, ensuring compatibility with diverse project
requirements while maintaining a consistent and centralized envi-
ronment management system.

We set up the Message Passing Interface (MPI) using MPICH
on the cluster to enable efficient parallel computing. Open MPI
was installed on all nodes, ensuring the availability of runtime li-
braries, compiler wrappers, and development tools. Environment
variables such as 'PATH’ and 'LD_LIBRARY_PATH’ were configured
globally or managed dynamically using Lmod. We verified the
installation by compiling and running test MPI programs using
"mpicc’ and 'mpirun’. Static IPs and passwordless SSH were config-
ured already before to facilitate seamless communication between
nodes. Additionally, MPI was integrated with SLURM, utilizing
’srun’ for job execution to leverage SLURM'’s resource management
capabilities. This setup provides a robust framework for scalable
parallel computing in the cluster.

The NVIDIA GTX 1650 GPUs in our cluster support CUDA for GPU-
accelerated parallel computations but lack the features required
for clustering GPUs across nodes, such as GPUDirect RDMA. This

limitation prevents the GPUs from being used together in a unified
multi-GPU setup. [33] Instead, each GPU operates independently,
and tasks must be run on individual GPUs within their respective
nodes. While this restricts the scalability of GPU workloads, it re-
mains suitable for single-node GPU computations and smaller par-
allel tasks.

Monitoring is a critical aspect of HPC cluster management, en-
suring system health, performance optimization, and fault detec-
tion. We installed Ganglia due to its ease of setup and widespread
use in HPC environments, allowing efficient tracking of system
metrics across all compute nodes [13, 10]. Ganglia provides real-
time resource utilization insights, helping to maintain workload
balance and optimize job scheduling.

Additionally, we tested Prometheus (on http://10.80.0.100:9090)
and Grafana (on http://10.80.0.100:3000) as alternative monitor-
ing solutions. Prometheus, with its time-series monitoring and
alerting capabilities, allows detailed system metric collection via
exporters [17]. Grafana, when integrated with Prometheus, pro-
vides an intuitive visualization interface for tracking CPU, memory,
and GPU usage in real time. While both Prometheus and Grafana
are viable options under the given IP configurations, we preferred
Ganglia for its simpler deployment and efficient monitoring of our
SLURM-managed cluster.

i $ ssh root@10.80.0.100
root@10.80.0.100's password:
Activate the web console with: systemctl enable --now cockpit.socket

Last failed login: Tue Oct 1 11:06:29 +0545 2024 from 36.138.99.175 on ssh:notty
There were 1880 failed login attempts since the last successful login.

Last login: Mon Sep 30 17:59:29 2024 from 10.80.0.254

[root@login ~]#

Figure 5: Failed login attempts in cluster.

Our cluster faced a significant cybersecurity threat daily due to
internet connectivity with nearly 2000-6000 failed login attempts
to the root account within 24 hours, which we suspect were primar-
ily bot-driven attacks. To mitigate this risk, we disable login with
root account in SSH and we installed the Fail2Ban package to en-
hance SSH security. Fail2Ban monitors login attempts and, after six
consecutive failed password entries, automatically blacklists the
offending IP address for an hour, blocking further SSH communi-
cation. This proactive approach effectively reduced unauthorized
access attempts and strengthened the cluster’s overall security.

3. Results and discussion

The implementation of our cluster setup demonstrates a cost-
effective and practical solution for high-performance computing
tasks. The master node efficiently managed resource allocation
and user authentication, ensuring seamless operation across the
cluster. Security was significantly enhanced with the integra-
tion of Fail2Ban, which successfully reduced unauthorized login at-
tempts by blacklisting suspicious IP addresses.

The individual GPU performance was validated for CUDA com-
putations, proving effective for single-node tasks despite the hard-
ware limitation of not being able to cluster GPUs. MPI communica-
tion over Ethernet was reliable, providing acceptable latency and
bandwidth for medium-scale workloads. Additionally, the integra-
tion of MPI with SLURM ensured efficient resource scheduling for
distributed computations.

The adoption of Lmod and Lua simplified software environment
management, enabling users to switch dynamically between vari-
ous versions of Python, and other required software. The setup of
Anaconda further streamlined Python-based workflows, offering
flexibility and efficiency for diverse computational tasks. These
features significantly improved the user experience in managing
software environments within the cluster.

Kathmandu University Journal of Science, Engineering and Technology, Vol. 19, No. 1, March 2025 5

Figure 6: Cluster setup.

The addition of 1TB of shared storage, bind-mounted to user di-
rectories, facilitated the handling of large-scale datasets and en-
sured easy access to results. This enhanced the system’s ability to
support data-intensive applications and long-term storage needs.

Containerization plays a crucial role in deep learning workflows
by providing isolated and reproducible environments. In our clus-
ter, we evaluated both Singularity and Docker as potential solu-
tions for containerized deep learning environments. While Docker
is widely used for its flexibility and ease of deployment, it re-
quires root privileges, making it less suitable for shared HPC en-
vironments. Conversely, Singularity enables users to run contain-
ers securely without requiring elevated permissions, making it a
more HPC-friendly alternative. Both containerization tools facili-
tate seamless execution of deep learning frameworks like Tensor-
Flow and PyTorch, ensuring dependency consistency across differ-
ent nodes. Based on our evaluation, Singularity is preferred for
our cluster due to its security model and compatibility with HPC re-
source managers like SLURM, but Docker remains a viable option
for standalone deep learning projects and development environ-
ments [16] [19] [34].

In summary, the results demonstrate the feasibility of building a
robust HPC cluster using commonly available hardware and open-
source software. While the system effectively balances cost, scala-
bility, and performance, limitations such as the inability to cluster
GPUs and reliance on Ethernet for MPI communication introduce
constraints for high-demand, large-scale applications. Future im-
provements could focus on integrating high-speed interconnects
and upgrading to HPC-oriented GPUs to enhance the cluster’s per-
formance and scalability further.

Table 1: Cluster configuration summary.

Component Specification
Master node 10.80.0.100, Intel i5 CPU, 16 GB
RAM

c1, c2, ¢3 (10.80.0.101-103), Intel
i5 CPU, 16 GB RAM

Compute nodes

GPUs NVIDIA GTX 1650 (on all nodes)
Storage 1TB (shared across all nodes)
Network Ethernet (1 Gbps)
Table 2: Software stack.
Software Version Purpose
Rocky linux 9.4 Operating system
SLURM 22.05 Job scheduling
Lmod Installed Environment management
Anaconda 2023.09 Python-based workflows

4. Conclusion

Setting up a local GPU cluster within a small department or uni-
versity presents a highly cost-effective alternative to renting cloud
GPUs. Our cost analysis demonstrates that operating a locally in-
stalled cluster with four NVIDIA GTX 1650 GPUs (4 x 4GB = 16GB
total) incurs a monthly electricity cost of only NPR 5,760 (based
on an 800W power consumption per node). In contrast, renting
an NVIDIA T4 GPU (16GB) in the cloud costs approximately NPR
123.50 per hour, amounting to NPR 29,640 per month for similar
usage [35, 36].

This stark difference underscores the long-term financial bene-
fits of local GPU clusters, particularly in regions like Nepal, where
electricity costs are relatively low. Beyond cost savings, a locally
managed cluster offers greater control over data privacy, inde-
pendence from internet connectivity, and uninterrupted access to
computational resources, making it an ideal solution for research
and education. While the initial hardware investment may seem
substantial, many institutions can leverage existing computing
labs to set up these clusters efficiently. Ultimately, the autonomy,
sustainability, and reduced recurring costs of an in-house GPU clus-
ter make it a far more viable and strategic investment for academic
and research institutions compared to reliance on cloud-based al-
ternatives.

Acknowledgments

We express our sincere gratitude to Herald College Kathmandu
for providing the research space, hardware, and infrastructure es-
sential for this project.

For detailed instructions on installing, and configuring, we have
made our setup process and related scripts available at https:
//github.com/aatizghimire/pluto-cluster. For running
this cluster, We have also made slurm with gpu sbatch file and in-
struction at https://github.com/aatizghimire/deep-lea
rning-gpu-slurm-template.

References

[1] Chahal D, Mishra M, Palepu S & Singhal R. Performance and
cost comparison of cloud services for deep learning workload.
In: Companion of the ACM/SPEC International Conference on Per-
formance Engineering, ICPE "21. Association for Computing Ma-
chinery, New York, NY, USA (2021). ISBN 9781450383318, p.
49-55. https://doi.org/10.1145/3447545.3451184.

[2] Lawrence J, Malmsten J, Rybka A, Sabol D A & Triplin K, Com-
paring tensorflow deep learning performance using CPUs,
GPUs, local PCs and cloud. URL https://academicwork
s.cuny.edu/cgi/viewcontent.cgi?article=1054&co
ntext=bx_pubs.

[3] Munhoz V, Bonfils A, Castro M & Mendizabal 0. A perfor-
mance comparison of HPC workloads on traditional and cloud-
based HPC clusters. In: 2023 International Symposium on Com-
puter Architecture and High Performance Computing Workshops
(SBAC-PADW). IEEE. ISBN 979-8-3503-8160-3, pp. 108-114. ht
tps://doi.org/10.1109/SBAC-PADW60351.2023.00026.

[4] Han J, Xu L, Rafique M M, Butt AR & Lim S H. A quanti-
tative study of deep learning training on heterogeneous su-
percomputers. In: 2019 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE. ISBN 978-1-7281-4734-5, pp. 1-12.
https://doi.org/10.1109/CLUSTER.2019.8890993.

—
(6]
—

Vaihela E. The performance and optimization of HPC clusters
(2022). URL https://urn.fi/URN:NBN:fi:amk-2022061
017370.

https://github.com/aatizghimire/pluto-cluster
https://github.com/aatizghimire/pluto-cluster
https://github.com/aatizghimire/deep-learning-gpu-slurm-template
https://github.com/aatizghimire/deep-learning-gpu-slurm-template
https://doi.org/10.1145/3447545.3451184
https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1054&context=bx_pubs
https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1054&context=bx_pubs
https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1054&context=bx_pubs
https://doi.org/10.1109/SBAC-PADW60351.2023.00026
https://doi.org/10.1109/SBAC-PADW60351.2023.00026
https://doi.org/10.1109/CLUSTER.2019.8890993
https://urn.fi/URN:NBN:fi:amk-2022061017370
https://urn.fi/URN:NBN:fi:amk-2022061017370

A. Ghimire et al.

(6]

—
~
—

—
[
(=]

[t

[11

—_

[12

—

(13]

(14]

[15

—

[16]

Penyala H, Ibrahim S & El Mesalami A. The raspberry pi edu-
cation mine: For teaching engineering and computer science
students concepts like, computer clusters, parallel computing,
and distributed computing. In: 2020 IEEE International Confer-
ence on Electro Information Technology (EIT). IEEE. ISBN 978-1-
7281-5317-9, pp. 624-628. https://doi.org/10.1109/EI
T48999.2020.9208242.

Cicirello V A. Design, configuration, implementation, and per-
formance of a simple 32 core raspberry pi cluster. https:
//doi.org/10.48550/arXiv.1708.05264.

Vargas-Pérez S. Designing an independent study to cre-
ate HPC learning experiences for undergraduates. In: 2022
IEEE 29th International Conference on High Performance Computing,
Data and Analytics Workshop (HiPCW). IEEE. ISBN 979-8-3503-
3388-6, pp. 6-11. https://doi.org/10.1109/hipcw57629
.2022.00006.

Moses Mwasaga N & Joy M. Implementing micro high per-
formance computing (WHPC) artifact: Affordable HPC facili-
ties for academia. In: 2020 IEEE Frontiers in Education Confer-
ence (FIE). IEEE. ISBN 978-1-7281-8961-1, pp. 1-9. https:
//doi.org/10.1109/FIE44824.2020.9273986.

Mollova S, Zhekov M, Kostadinov A & Georgieva P. Labora-
tory model for research on computer cluster systems. In: 2018
41st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). IEEE., ISBN
978-953-233-095-3, pp. 1388-1393. https://doi.org/10.2
3919/MIPR0O.2018.8400250.

Penyala H, Ibrahim S & El Mesalami A. The raspberry pi edu-
cation mine: For teaching engineering and computer science
students concepts like, computer clusters, parallel computing,
and distributed computing. In: 2020 IEEE International Confer-
ence on Electro Information Technology (EIT). IEEE. ISBN 978-1-
7281-5317-9, pp. 624-628. https://doi.org/10.1109/EI
T48999.2020.9208242. URL https://ieeexplore.ieee.
org/document/9208242/.

Alvarez L, Ayguade E & Mantovani F. Teaching HPC systems
and parallel programming with small-scale clusters. In: 2018
IEEE/ACM Workshop on Education for High-Performance Comput-
ing (EduHPC). IEEE. ISBN 978-1-7281-0190-3, pp. 1-10. https:
//doi.org/10.1109/EduHPC.2018.00004.

Rao C M & Shyamala K. Analysis and implementation of a par-
allel computing cluster for solving computational problems in
data analytics. In: 2020 5th International Conference on Comput-
ing, Communication and Security (ICCCS). IEEE. ISBN 978-1-7281-
9180-5, pp. 1-5. https://doi.org/10.1109/ICCCS49678
.2020.9277362.

Kumar D, Memon S & Thebo L A. Design, implementation &
performance analysis of low cost high performance comput-
ing (HPC) clusters. In: 2018 12th International Conference on Sig-
nal Processing and Communication Systems (ICSPCS). IEEE. ISBN
978-1-5386-5602-0, pp. 1-6. https: //doi.org/10.1109/IC
SPCS.2018.8631769.

NVIDIA. NVIDIA DGX OS 6 User Guide - Release Notes (2024). URL
https://docs.nvidia.com/dgx/dgx-os-6-user-guide
/release_notes.html, accessed: 2025-03-25.

Emil V. Creation and optimization of HPC clusters. URL http
s://www.theseus.fi/bitstream/handle/10024/7546
50/Vaihela_Emil.pdf?sequence=2.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

28]

[29]

Majee A. DeepOps & SLURM: Your GPU cluster guide. https:
//doi.org/10.48550/arXiv.2405.00030.

NVIDIA, Deploying a scalable GPU-as-a-service platform and
building a deep learning project in under 80 minutes | GTC
digital march 2020 | NVIDIA on-demand. URL https://www.
nvidia.com/en-us/on-demand/session/gtcsj20-s22
086/.

Volkov A & Palmer B, Deploying rich cluster API on DGX for
multi-user sharing. URL https://developer.nvidia.com
/blog/deploying-rich-cluster-api-on-dgx-for-m
ulti-user-sharing/, accessed: 2025-01-30.

Soyinka W. Installing Rocky Linux 9 - Documentation. Rocky
Linux Project (2024). URL https://docs.rockylinux.or
g/guides/installation/, accessed: 2024-11-29.

Saive R, How to setup SSH passwordless login in Linux,
Tecmint. URL https://www.tecmint.com/ssh-passwor
dless-login-using-ssh-keygen-in-5-easy-steps/,
accessed: 2024-11-29.

Moffatt R, Linux cluster sysadmin - Parallel command execu-
tion with PDSH, Rittman Mead Blog. URL https://www.ritt
manmead.com/blog/2014/12/1linux-cluster-sysadmi
n-parallel-command-execution-with-pdsh/, accessed:
2025-01-30.

SergioMEV. Slurm for dummies: A dummy’s guide to setting
up (and using) HPC clusters on Ubuntu 22.04 LTS using slurm
and munge. GitHub repository (2024). URL https://github
.com/SergioMEV/slurm-for-dummies, accessed: 2024-11-
29.

Rackspace. Bind Mounts in Linux. URL https://docs.racks
pace.com/docs/bind-mounts-in-1linux, accessed: 2024-
11-29.

HowtoForge. How to Set Up an NFS Mount on Rocky Linux 8. URL
https://www.howtoforge.com/how-to-set-up-an-nfs
-mount-on-rocky-linux-8/, accessed: 2024-11-29.

Barone G B, Bottalico D, Carracciuolo L, Doria A, Michelino D,
Pardi S, Russo G, Sabella G & Spisso B. Designing and imple-
menting a high-performance computing heterogeneous clus-
ter. In: 2022 International Conference on Electrical, Computer and
Energy Technologies (ICECET). IEEE. ISBN 978-1-6654-7087-2, pp.
1-6. https://doi.org/10.1109/ICECET55527.2022.987
2709.

Kumar M. Distributed execution of dask on HPC: A case
study. In: 2023 World Conference on Communication & Comput-
ing (WCONF). IEEE. ISBN 979-8-3503-1120-4, pp. 1-4. https:
//doi.org/10.1109/WCONF58270.2023.10234994.

Arisal A, Iryanto S B & Akbar Z. Managing multi-services
for multi-users in heterogeneous cluster computing system.
In: 2019 International Conference on Computer, Control, Informatics
and its Applications (IC3INA). IEEE. ISBN 978-1-7281-5540-1, pp.
103-107. https://doi.org/10.1109/IC3INA48034.2019
.8949602.

Manager S W. Generic Resource (GRES) Scheduling. Slurm
SchedMD. URL https://slurm.schedmd.com/gres.html,
accessed: 2024-11-29.

https://doi.org/10.1109/EIT48999.2020.9208242
https://doi.org/10.1109/EIT48999.2020.9208242
https://doi.org/10.48550/arXiv.1708.05264
https://doi.org/10.48550/arXiv.1708.05264
https://doi.org/10.1109/hipcw57629.2022.00006
https://doi.org/10.1109/hipcw57629.2022.00006
https://doi.org/10.1109/FIE44824.2020.9273986
https://doi.org/10.1109/FIE44824.2020.9273986
https://doi.org/10.23919/MIPRO.2018.8400250
https://doi.org/10.23919/MIPRO.2018.8400250
https://doi.org/10.1109/EIT48999.2020.9208242
https://doi.org/10.1109/EIT48999.2020.9208242
https://ieeexplore.ieee.org/document/9208242/
https://ieeexplore.ieee.org/document/9208242/
https://doi.org/10.1109/EduHPC.2018.00004
https://doi.org/10.1109/EduHPC.2018.00004
https://doi.org/10.1109/ICCCS49678.2020.9277362
https://doi.org/10.1109/ICCCS49678.2020.9277362
https://doi.org/10.1109/ICSPCS.2018.8631769
https://doi.org/10.1109/ICSPCS.2018.8631769
https://docs.nvidia.com/dgx/dgx-os-6-user-guide/release_notes.html
https://docs.nvidia.com/dgx/dgx-os-6-user-guide/release_notes.html
https://www.theseus.fi/bitstream/handle/10024/754650/Vaihela_Emil.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/754650/Vaihela_Emil.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/754650/Vaihela_Emil.pdf?sequence=2
https://doi.org/10.48550/arXiv.2405.00030
https://doi.org/10.48550/arXiv.2405.00030
https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s22086/
https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s22086/
https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s22086/
https://developer.nvidia.com/blog/deploying-rich-cluster-api-on-dgx-for-multi-user-sharing/
https://developer.nvidia.com/blog/deploying-rich-cluster-api-on-dgx-for-multi-user-sharing/
https://developer.nvidia.com/blog/deploying-rich-cluster-api-on-dgx-for-multi-user-sharing/
https://docs.rockylinux.org/guides/installation/
https://docs.rockylinux.org/guides/installation/
https://www.tecmint.com/ssh-passwordless-login-using-ssh-keygen-in-5-easy-steps/
https://www.tecmint.com/ssh-passwordless-login-using-ssh-keygen-in-5-easy-steps/
https://www.rittmanmead.com/blog/2014/12/linux-cluster-sysadmin-parallel-command-execution-with-pdsh/
https://www.rittmanmead.com/blog/2014/12/linux-cluster-sysadmin-parallel-command-execution-with-pdsh/
https://www.rittmanmead.com/blog/2014/12/linux-cluster-sysadmin-parallel-command-execution-with-pdsh/
https://github.com/SergioMEV/slurm-for-dummies
https://github.com/SergioMEV/slurm-for-dummies
https://docs.rackspace.com/docs/bind-mounts-in-linux
https://docs.rackspace.com/docs/bind-mounts-in-linux
https://www.howtoforge.com/how-to-set-up-an-nfs-mount-on-rocky-linux-8/
https://www.howtoforge.com/how-to-set-up-an-nfs-mount-on-rocky-linux-8/
https://doi.org/10.1109/ICECET55527.2022.9872709
https://doi.org/10.1109/ICECET55527.2022.9872709
https://doi.org/10.1109/WCONF58270.2023.10234994
https://doi.org/10.1109/WCONF58270.2023.10234994
https://doi.org/10.1109/IC3INA48034.2019.8949602
https://doi.org/10.1109/IC3INA48034.2019.8949602
https://slurm.schedmd.com/gres.html

Kathmandu University Journal of Science, Engineering and Technology, Vol. 19, No. 1, March 2025 7

[30]

[31]

[32]

[33]

Documentation L. How to Transition to Lmod (or How to Test Lmod
Without Installing It for All). Lmod. URL https://1lmod.readt
hedocs.io/en/latest/045_transition.html, accessed:
2024-11-29.

Analytics B D. Modules, LMod, and EasyBuild. URL https://ne
susws-tutorials-bd-dl.readthedocs.io/en/latest
/hands-on/easybuild/, accessed: 2025-01-30.

Gamblin T, LeGendre M, Collette M R, Lee G L, Moody A,
de Supinski B R & Futral S. The spack package manager: bring-
ing order to HPC software chaos. In: SC '15: Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Andlysis, SC15. ACM, pp. 1-12. https:
//doi.org/10.1145/2807591.2807623.

Olmos] V, Liss L, Oved T, Binshtock Z & Goldenberg D. Ad-
vanced software architectures and technologies in high per-

[34

[35

[36

]

—_—

—

formance computing and data centers. In: Optical Fiber Commu-
nication Conference (OFC) 2020. Optica Publishing Group. ISBN
978-1-943580-71-2, p. T3K.3. https://doi.org/10.1364/
0FC.2020.T3K.3.

McMillan S, How to run NGC deep learning containers with
singularity, NVIDIA Technical Blog. URL https://developer.
nvidia.com/blog/how-to-run-ngc-deep-learning-c
ontainers-with-singularity/.

GlobalPetrolPrices. Nepal electricity prices, March 2024. URL
https://wuw.globalpetrolprices.com/Nepal/elect
ricity_prices/, accessed: 2024-11-29.

Kleban C, NVIDIA Tesla T4 GPUs now available in beta. URL
https://cloud.google.com/blog/products/ai-machi
ne-learning/nvidia-tesla-t4-gpus-now-available
-in-beta, accessed: 2024-11-29.

https://lmod.readthedocs.io/en/latest/045_transition.html
https://lmod.readthedocs.io/en/latest/045_transition.html
https://nesusws-tutorials-bd-dl.readthedocs.io/en/latest/hands-on/easybuild/
https://nesusws-tutorials-bd-dl.readthedocs.io/en/latest/hands-on/easybuild/
https://nesusws-tutorials-bd-dl.readthedocs.io/en/latest/hands-on/easybuild/
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1364/OFC.2020.T3K.3
https://doi.org/10.1364/OFC.2020.T3K.3
https://developer.nvidia.com/blog/how-to-run-ngc-deep-learning-containers-with-singularity/
https://developer.nvidia.com/blog/how-to-run-ngc-deep-learning-containers-with-singularity/
https://developer.nvidia.com/blog/how-to-run-ngc-deep-learning-containers-with-singularity/
https://www.globalpetrolprices.com/Nepal/electricity_prices/
https://www.globalpetrolprices.com/Nepal/electricity_prices/
https://cloud.google.com/blog/products/ai-machine-learning/nvidia-tesla-t4-gpus-now-available-in-beta
https://cloud.google.com/blog/products/ai-machine-learning/nvidia-tesla-t4-gpus-now-available-in-beta
https://cloud.google.com/blog/products/ai-machine-learning/nvidia-tesla-t4-gpus-now-available-in-beta

	Introduction
	Materials and methods
	Results and discussion
	Conclusion

