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Abstract
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1. Introduction

Given a complete metric space (M, d) and a self-mapping
P on M such that:

d(Pu, Pv) < ad(u,v) Vu, v € M, a€10,1) fized.
(1.1)
The operator P in (1.1) above is called an a-contraction (or
Banach contraction). Banach in his celebrated result proved
that Picard iteration converges to the unique fixed point of
Pin M see[1].

Motivated by Banach’s work, Rakotch [2], generalized
Banach’s assertion by introducing a monotone decreasing
function o : (0,00) — [0, 1) such that, for each u,v €
B,u # v,

d(Gu, Gv) < a(d(u,v)) (1.2)

Kannan [3] claimed that G need not be continuous to have
fixed point, but compensated for this using the following
more robust contraction definitions: There exists a € [0, 3)
such that

d(Gu, Gv) < ald(u, Gu) + d(v, Gv)], Yu, v € B. (1.3)

Over the years, there have been several generalizations
and extensions of classical Banach’s fixed point theorem.

Jungck [4] moved a step further by introducing the notion
of common fixed point of mappings S, G : M — M defined
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on a complete metric space (M, d). He employed the con-
tractive definition below:
For S,G : M — M, there exists a € (0, 1) such that,

d(Gu, Gv) < ad(Su, Sv), Yu,v € M, (1.4)

In generalizing inequalities (1.1) - (1.3) above and many
more related results in literature, Akram et. al [5] gave the
definition below:

Definition 1.1. [5]: “A self-map T of a metric space X is
called an A-contraction if:

d(Tz, Ty) < ald(z,y),d(x, Tz),d(y, Ty))

forall z,y € X and some o € (A), where (A) is the set of
all functions a : R3 — R satisfying:

i) avis continuous on the set R3. (with respect to Euclidean
metric on R3 );

ii) if any of the conditions a < a(a, b,b),0or a < a(b,b, a),
ora < a(b, a,b) holds for some a, b € R, then there exists
k € ]0,1) such that a < kb.”

Olatinwo and Omidire [6] extended results in [1] and [5] by
proving some common fixed point theorems for the below
general class of mapping:

Definition 1.2. [6]: “Let (X, d) be a metric space and T', S :
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X — X such that

< (d(Sz, Sy),d(Sz, Tx),d(Sy, Ty),
[d(Sz, Tx)]"[d(Sy, Tx)|Pd(Sz, Ty),
d(Sy, Tx)[d(Sz, Tx)]™)
Va,ye X;r,p,m e Ry (1.5)

d(Txz, Ty)

and that (1.5) is satisfied by the set of all functions

¢ : RS — Ry such that:

(i) ¢ is continuous on the set R} (with respect to Eu-
clidean metric on R®);

(i) if any of the conditions a < ¢(a,b,b,b,b), or a <
o(b,b,a,b,b),ora < (b, b,a,c,c)holds for some a,b,c €
R, then there exists a constant k € [0, 1) suchthata < kb.

However, Berinde and Pacurar [7] introduced the con-
cept; enrichment of non-linear mappings, called an en-
riched contractions which includes, amongst many others;
a-contraction.

Definition 1.3. [7]: “Let (Y, ||.||) be a normed linear space.
An operator P : Y — Y is called enriched contraction if
Jc€[0,00), and B € [0,c+ 1) such that

lle(w —y) + To =Tyl < Bllz —yl[, Yo,y €Y " (16)

In [7], it was shown that any contractive condition (1.6)
reduced to (1.1) if ¢ = 0. (See example 1 of [7] for details).

Definition 1.4. [4]: Let M be a complete metric space,
and suppose G, U : M — M. For vy € M, sequence
{Uvp}2y C M generated by

Uvpg1 = Gup, n >0,
is called Jungck’s iterative process.

Using idea of Jungck, many authors have improved on the
existing iterative techniques.

Definition 1.5. [8, 9]: “Let B be a Banach space, and the pair
of operators U, G : B — B. For any vg € B, the sequence
{Uv,}52, defined by

Uvps1 = (1 —c)Uvy, + cGvy,, n>0, c€(0,1). (1.7)
is called Jungck-Schaefer iteration.”

For more on Jungck-type iterative algorithms, interested
reader can see [8, 10, 11, 12, 13, 14] and references therein.

In this paper, we give extensions of the celebrated re-
sults of Jungck [4] using enriched contraction definitions, re-
cently announced in [7] in line with generalizations given
in the papers [6] and [5] by presenting some general class of
enriched contractive definitions called enriched-Jungck con-
tractions and study the existence and convergence of Jungck-
Schaefer iterative techniques (as introduced in [14]) to a
unique common fixed point of these class of mappings satis-
fying commuting and compatible conditions.

The following are vital tools in obtaining our results:

Definition 1.6. [15]: “Consider a function v: R, — R,
satisfying:
(a) ¥ is monotone increasing i.e t; < to
= Y(t1) < P(ta2);
(b) ¥ (t) converges to 0 as n — oo forall t € Ry;
(©) >o02 o w™(t) converges forall ¢t > 0.”

Remark 1.7. (i) A function 1) satisfying (a) and (b) in defini-
tion 1.6 above is said to be a comparison function.

(ii) A function ) satisfying (a) and (c) in definition 1.6
above is said to be a (c)- comparison function.

(iii) Any comparison function satisfies 1) (0) = 0.

2. Preliminary results

Definition 2.1. Let (L, ||.||) be a normed linear space. An
Operator P : L — L is said to be a generalized enriched
Jungck-contraction if for any ¢ € [0, 00) and a function ¢
with ¢(¢) € [0,c+ 1), thereisamap Q : L — L, such that
Vx,y € L wehave

|le(Qz — Qy)
+Px— Pyl < ¢[llQz —Qyll,
1Qz — Pz||,|Qy — Pyl|,
([[Qz — Pz|)"(||Qy — Px[)”
([1Qz — Pyl|), [|Qy — Px||
(IQz — Pz|[)™],
Vaz,yeLr,mp e Ry, (2.1)

and ¢ is a function defined by ¢ : R5. — R such that:

(i) ¢ is continuous on the set Ri (with respect to Eu-
clidean metric on R® );

(ii) if any of the conditions f < ¢(f,9,9,9,9), or f <
#(9,9.f,9.9),0r f < &(g,9, f, h, h) holds for some f, g, h
in R, then there exists a constant k € (0, 1) such that f <

k(g)-

The next definition is a generalization of Definition 2.1 us-
ing a c-comparison function (Definition 1.6).

Definition 2.2. Let (L,||.||) be a normed linear space. A
mapping P : L — L is said to be a generalized enriched
1 — Jungck-contraction if for any ¢ € [0, c0), and a function
¢ with ¢(t) € [0,c + 1), thereisamap @ : L — L, such
thatVz,y € L we have

lle(Qz — Qy)

+Pz—Pyll < ¢[l|Qr — Qyl], [|Qz — Pxl],
1Qy — Pyl|, ([|[Qz — Pxl])"
(1Qy — Pl
(IlQz — Pyl]), [|Qy — Px|]
([1Qz — Px|[)™],

Va,yeLr,m,p € Ry, (2.2)
and ¢ is a function defined by ¢ : RS — R such that:

(i) ¢ is continuous on the set R} (with respect to Eu-
clidean metric on R® );

(ii) if any of the conditions f < &(f,9,9,9,9), or
f < 89,9,1,9,9), or f < ¢(g,9, f,h, h) holds for some
f,g,hin R, then there exists a positively homogeneous c-
comparison function ¢ : Ry — R, such that f < ¢(g).

Definition 2.3. Let (L,||.||) be a normed linear space. A
mapping P : L — L is said to be a generalized enriched
Jungck-contraction if for any ¢ € [0, c0) and a function ¢
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with ¢(¢) € [0,c¢ + 1), there is a mapping @ : L — L, such
that Vu,v € L we have

|le(Qu — Qu) + Pu — Pu|| <¢[||Qu — Qul|,||Qu — Pull,
[|Qv — Pvl|], V u,ve L.

and ¢ is a function defined by ¢ : R3 — R such that:
(i) ¢ is continuous on the set R} (with respect to Eu-
clidean metric on R?);

(i) if any of the conditions f < ¢(f,g,9), or f <

#(g, f,9),or f < ¢(g,g, f) holds for some f, g in R, then
there exists a constant k € (0,1) such that f < k(g).

Definition 2.4. Let (L,||.||) be a normed linear space. A
mapping P : L — L is said to be an enriched 1)— Jungck
contraction if for any ¢ € [0,00), and function ¢ with
¢(b) € [0,¢ + 1), thereisamap Q : L — L, such that
Vu,v € Lwehave

le(Qu — Qu) + Pu— Pu|| <¢[||Qu — Qul|.||Qu — Pul|,
[|Qu — Pv||], V w,veL.

and ¢ is a function defined by ¢ : R3 — R such that:

(i) ¢ is continuous on the set R (with respect to Eu-
clidean metric on R?);

(i) if any of the conditions f < ¢(f,g,9), or f <

o(g, f,9),0r f < ¢(g,g, f) holds for some f,gin R, then
there exists a positively homogeneous c-comparison func-

tiony : Ry — Ry suchthat f < ¢(g).

Example 2.5. Let X = [0, 2] be endowed with the usual
norm. And let P, Q be self maps on X, defined as P(u) =
20 +u; Q(u) =u, Vu e X.

We have,

|Pu— Pov| = [(2u®+u) — (20% + )|

12u? — 20% — v 4 |

12(u® = %) + (u — )]

= [2(utv)(u—v)+ (u—-0)
= [Cu+v)+1)(u—v)
= Qu+v)+D[(u—0v)
= (2(u+0))|Qu - Qul.

Clearly, forall u,v € X, |Pu— Pv|> |Qu — Qu|.
Hence, P with respect to @ is not a Jungck contraction.
But, P is a generalized enriched Jungck contraction; as

shown below:

Choose c =1, r = p = m = 0 and define ¢ as

o(a,b,c,de) =a+b+c+d+e, Va,bedee Ry,

Then
|e(Qu — Qu)
+Pu— Pv| = |Qu— Qv+ Pu— Pu|

|Pu — Qu + Qu — Pv|

< |Pu—Qu|+ |Qu — Pu|
< |Pu—Qu|+ |Qu— Pv|+

|Qu — Qu| + |Qu — Pu| + |Qu — Pv|
< ¢(|Pu— Qul,|Qu — Pu|,

|Q’LL - Q’U|, |Q'LL - P'LL|, |QU - P’UD

That is, P with respect to Q is a generalized enriched Jungck
contraction.
Remark 2.6. (i) If ¢ = 0, Definition 2.1 above reduces to Defi-
nition 1.2 (with d(z,y) = ||z — y||), see [6]

(i) If v» = k (a constant) then Definition 2.2 becomes Def-
inition 2.1.
Remark 2.7. Let X be a convex subset of a linear space L and
P a self map on X. If there is an identity map @Q : X —
X. Then for any A € (0,1), the set of all fixed points of a
mapping Py: X — X givenby Py (z) = (1 — \)Qx + APz
coincides with Fiz(Q). Also the set of all fixed points of a
mapping

(P,Q): X - X

given by Jungck-Schaefer iterative sequence
Qupy1 = (1 — N)Quy, + APuy, (2.3)
coincides with Jungck iteration
Qup+1 = Pa\un, n >0, i.e Fiz(Py) = Fiz(Q).

Lemma 2.8. (Analogue of Jungck’s fixed point theorem) Suppos-
ing D is a nonempty, closed subset of a Banach space B, and let P
be a mapping from D to D. If there exists a continuous, selfmap
Q on D which commutes with P and P(D) C Q(D) satisfies

1Pz — Pyl < Kl|IQz—Qyll, ¥ 7,y € D, k € [0,1) (2.4
Then, P and @ have a unique common fixed point in D.

The following definitions and results shall be required in
Section 4.
Let (I, || - ||) be a hormed linear space.

Definition 2.9. [16] “Two self-mappings P and Q on X are
weakly commuting if

IPQx — QPal| < ||Px — Qal|, ¥ € X.

Definition 2.10. [17] “Self mappings P and Q on X are com-
patible if and only if

lim ||PQx, — QPx,||=0
n—oo
whenever {x,,} is a sequence in X, such that

lim P(z,)= lim Q(z,) =w

n— o0 n— oo
for some w € X.

Remark 2.11. (i) Definition (2.10) was originally given in met-
ric space settings. Since metric is induced by the norm (i.e
d(z,y) = ||z — yl|), it is adapted to a normed space settings.
(ii) Commuting mappings are weakly commuting and the re-
verse is not true, see [17] for example.

(ili) Weakly commuting mappings are compatible, but
compatible mappings may not be weakly commuting see
[17] for illustration.

Lemma 2.12. [16, 17]: “Let P and Q be two compatible self-
mappings on Banach space B.
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o If Px* = Qx*, then PQx* = QPzx*.

¢ Assume that lim,, o, Pz, = lim,_,o Qz, = w for
somew € B.
(a) If P is continuous at w, then

lim QPx, = Pw.

n—oo

If  is continuous at w, then

lim PQx, = Qu.

n— oo

(b) If P and Q are continuous at w, then
Pw=Qw and QPw = PQu.

Theorem 2.13. [16] “Let (B, ||-||) be a Banach space and P, Q :
B — B be two mappings for which exist ¢ € (0,4o00] and 0 €
[0, ¢+ 1), such that

[le(u—v) + Pu— Pv|| < 0||Qu—Qvl|[,V u,v € B. (2.5)
If the below conditions are satisfied:
+ P, and Q) are compatible mappings, where
Py(u) = (1 = Nuy, + APuy, n >0,
+ P and @ are continuous,

then

.+ Pia(P) = Fix(Q) = {z};
« there exists A € (0, 1], so that the iterative sequence
{Qun+41}5%, converges strongly to z. ”

Remark 2.14. (i) Definition 2.3 generalizes 2.5.
ie,if ¢[||Qr—Qyll, ||Qz—Px||, |[|Qy—Pyl|] = 0]|Qz—Qyl|

then Definition 2.3 reduces to inequality 2.5.

(i) If ¢[||Qx — QI ||Qx — Px|],]|Qy — Pyl|, (||Qx —
Pz||)"(||Qy — Pz||)P(||Qz — Pyll), ||Qy — Pzl|(||Qz —
Pz|)™] = 0||Qu—Qwv||, Definition 2.1 reduces to inequality
2.5.

3. Main results

Theorem 3.1. Let (B, ||.||) be a Banach spaceand P, Q : B —
B be commuting mappings satisfying Definition 2.1. If ) is contin-
uous and P(B) C Q(B), then:

(i) Py and Q have a unique common fixed point u* € B;

(ii) There exists A € (0, 1] such that the Jungck-Schaefer itera-
tion { Quy, 12, defined by 2.3 converges to u*, for any ug € B.

Proof: Since ¢ > 0, there are two possible cases (i.e c = 0 and
c>0).

Case 1: For ¢ = 0, inequality 2.1 reduces to 1.5 of the author
in [6] and the prove follows the same argument of Theorem (2.1) in
[6].

Case 2: When ¢ > 0. Considering sequence defined by 2.3 and

_ 1
for A = 17, we have that

(3.1)

thenVu,v € B, inequality 2.1 becomes

(Qu — Qu)

+Pu — Po|| <o[[|Qu — Qull,[|Qu — Pul|,
1Qu = Poll, ([|Qu — Pul)"
Qv = Pul])"([|Qu — Pul|),
1Quv — Pul|(||Qu — Pul[)™]

HQ
A

I = A(Qu — Q)
+APu — APv||

(L = \)Qu + APu
—(1 - N)Qu + APy
= ||Qunt1 — Quat1]|
|| Pxttn, — Prvn|

< A(6llQu - Qull,lIQu ~ Pull.
1Qu = Pell,
(11Qu = Pull)"(l|Qv — Pull)”
(IIQu - Pol),
1Qu — Pull(l|Qu — Pul))™}).

(3.2)

Now, considering Jungck-Schaefer iterative process {Qu, }5%
defined by (2.3), which actually coincides with Jungck iteration as-
sociated with Py and Q) i.e.

Qun = P,\’U/n,h
letv=wu,andu = u,_1,so

||Qun - Qun-i-l” :||P)\un—1 - P)\unH
A (0l11Qun-1 — Quall;

[|Qun—1 — Patn—1|], [|Qupn — Prunl|,
([|Qun—1 = Pxup_1]|)"

([|Qun — Pxup—_1]])?

([1Qun—1 — Prunl]),

[|Qun — Prun—1]]

(11Qun—1 = Paua)™])
A (611Qun—1 = Quall,|Qun-1 = Quall

|| Qur, _Qun-&-lH’
(1Qun—1 — Qun )" ([|Qus — Qui||)?
(|1Qun—1 — Qupy1ll),

1Qun — Qun(1Qun 1 — Qual )]
= (6111Qun—1 = Quall, | Qun—1 = Qual
1Qun = Quata1,0,0))
gAxk@thl—QmM> (3.3)

|Qun — Qupt1|| < p(||Qun—1 — Quanl|), (3.4)
where p = A x k < 1.
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Inductively from (3.4) we have

|Qun — Qup1]| (|| Qupn—1 — Quy||)

12 (|| Qun—2 — Qua—1l])
N3(||Qun73 — Qn—2l|)
1

"(lQuo — Qual]),

VAN VAN VANVAN

1Qun — Qunia|] < p™([|Quo — Quall). (3.5

By repeated application of triangle inequality on (3.5), for any p €
N we have:

p (1 —pP)
I—p
([[Quo — Qual]) = 0,
asn—00 (0<pu=Axk<1)
(3.6)

HQUn - Qun+p|| <

Hence, {Quy, }22, is a Cauchy sequence in Banach space
B, then, there exists u* € B such that

lim Qu, = lim Pyu,_; = u".
n—oo n—oo

With continuity of ) and commutativity of P and @, we
have the following:

Qu* = Q( lim Qu,) = lim S?u, (3.7)

n—roo

Qu* = Q( lim Thu,) = lim (QPy\u,) = lim (P\Quy).
n— o0 n— oo n— oo
(3.8)
Thus, with u,, = Qu,, and v, = u* in inequality (3.2) we
have

1PA(Qua) = Py || <A(8111Q%n = Qu,
1Q%wn = P(Qua)ll, || Qu* — Pu’],
(1Q(Qun) — Pr(Qua)l)”
(llQu" = PA(Qun)[I)”
(11Q(Qun) = P,
1Qu* = Px(Qu)|
(1Q(Qun) = PA(Qua)I)™)-

A (601Q%un — Qu"ll

1Q%un — Pa(Qun)ll, [|Qu™ — Pau]],

(11Q%un — Pr(Qua))"
(lQu" — Px(Qun)|])”
(11Q%*un — Pru™|)),
1Qu™ — Px(Quq )|

(11Q%u,, — A(Qun)u)m]). (3.9)

Applying (3.7) and (3.8) into (3.9), as n — oo gives

1Qu* = Pr*(| <A(@lllQu — Qu|l

1Qu” — Qu™|, [[Qu” — Pxu™]],
(1Qu* = Qu™)[])"
(lQu" = Qu)|)"(|Qu™ — Pyxu”[]),

1Qu" = Q;lI(IIQu" — Qu)I)™))

=2 (60,0,[|Qu" — Prr*[1,0,0])
<\ x k(0) = 0.
Therefore, we have Qu* = Pyu*.
And again, with v,, = u* in inequality (3.2), we also have
1Pt — Py || <A (6011Qun — Qu|l

||Qun — Pyuy)ll, ||Qu™ — Pxu™||,
([|Qus — Prun)|[)"
([|Qu™ = Prun)[))"(||[Qus — Pru’|]),

1Qu" = Prunl(l|Qun — Prunll)™])
Taking limit as n — oo gives

lu* = Py || <A (@l — Qul,
[ =[], |Qu* = Pyu|],
(Il = ) (lQu" — w[[)?
(Il = Pre(]), | @uu — |

(Il = w)11)™])
=A(slllu* — Pr’]1,0,0,0,0))
<A x k(0)
=0.

This implies that, u* = Pyu*.
Hence,
Qu* = P\u* =u".

Now, we prove the uniqueness of this common fixed point.
Suppose not, then there exists u* € B, such that
Qu* = Pyu* = u*, Qu* = P\v* = v*,
vt =[[Paut — Pyo|
<A(olllQu* - Qv
1Qu™ — Pyu™|], [|Qu* — Pyv”|],
([1Qu™ = Paxu™[|)"([|Qu™ — Pxu™|[)”
([1Qu* — Pyv™|]),
1Qu™ — Paxu™[|(|[Qu” — Pxu™|], )m]>

=(@lllu* = v*[1,0,0,0,0])
<\ x k(0)
=0.

[|u® =

Therefore, u* = v*
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Example 3.2. Let B = [—2, 0] be endowed with usual norm
and P, Q be self-mappings on B defined as

P(u) = u?® +2uand Q(u) = u.
It is clear to see that
QP(u) = PQ(u) = u*+2u, Yu € B, and P(B) C Q(B).

We show that P with respect to @ does not satisfy Jungck
condition as we have below:

| Pu — P

|(u? + 2u) — (v? + 20)]

= |u® —v? —2v + 2u|

= |(u® = v*) +2(u —v)|

= |(w+v)(u—v)+2(u—0)
= [((u+0) +2)(u—v)|

= ((u+0)+2)[(u—v)|

= (2+u+0))Qu—Qul.

Clearly, forallu,v € B, |Pu— Pv| > |Qu — Quv|.
Hence, P with respect to @ is not a Jungck contraction.
However, define ¢ as

o(a,b,c,dye) =a+b+c+d+e, Va,bedee Ry,

and choose ¢ = 1, then by following similar argument in
Example 2.5, it easy to see that P with respect to Q satisfies
inequality 2.1. that is,

|le(Qu — Q)

+Pu—Pul| < o[|[Pu—qQul,

1Qu = P, |Qu — Qull
1(Qu — Puy”(1IQu — Pul)”
(1IQu - Pl

1Qu — Pull(l|Qu — Pul))™]

And all conditions of Theorem 3.1 are met. Hence, common
fixed point of P and Q exists. Indeed,

Fix(P) = Fiz(Q) = —1.

Also, with A = %, and uy = —2, Jungck-Schaefer iteration
2.3 converges to the unique fixed point of P and @

Theorem 3.3. Let (B, ||.||) be a Banach spaceand P, Q : B —
B be commuting and generalized enriched 1)—Jungck contraction.
If Q is continuous and P(B) C Q(B). Then:

(i) Py and Q have a unique common fixed point u*;

(ii) There exists A € (0, 1] such that the Jungck-Schaefer iter-
ation {Qu, }52, defined by

Qupt+1 = (1 = N)Quy + APuy, n>0 (3.10)

converges to u™, for any ug € B.

Proof: Since ¢ > 0, we have two possible cases to consider (i.e
c=0andc > 0).

Case 1: For ¢ = 0, inequality (9) reduces to Definition (1.5) of
the author in [6] and the prove follows the same argument of The-
orem (2.2) in [6].

Case 2: When ¢ > 0. Like the prove of theorem (3.1) above, we
have

||Qun - Qun-i-l” :||P)\un—1 - P)\unH
<A (9l11Qun-1 — Qual
[[Qun—1 — Paxun—1],[|Qun — Pruyl|,
(HQun—l - P)\un—1||)r
(||Qun — Prun—1][)?
([|Qupn—1 — Pruyll),
||Quyn — Prtin_1]|

(11Qun—1 — Prun—[)™)
:A(¢mQum4——QuuL

||Qun—1 - Qun”y HQUW - Qu71,+1”a
(1Qun—1 — Qun|)"([|Qun — Qual[)?
([1Qun—1 — Qup1]l),

1Qun — Qual(11Qun—1 — Qunl ™)
=\ (6111Qun—1 = Quall,|Qun—1 — Qull,

1Qun = Quata1,0,0))
<GAIQun-1 — Quall),

Since 1) is positively homogeneous function

1Qun — Quata]| < Y(A[|Qun—1 — Qual).  (3.11)

Inductively from (3.11) we have

|Qun — Quny1]| Y| Qun—1 — Qual|)
P* (M| Qua—2 — Qup_1]])
w3(>‘||Qun—3 - Qun—QH)

P (A|Quo — Qual]),

IN AN CIA A

||Qun - Qun-i-l” < "/)n()‘HQuO - Qul”) (3.12)

By repeated application of triangle inequality on (3.12), forany p €
N we have:

n+p—1
1Qun — Quaspll < D W (NQuo — Qual])
k=n
n+p—1
= Y V*(AIQuo — Qual|)

k=0

n—1
— ST AIQuo — Quill). (3.13)
k=0

Now, since 1 is a c-comparison function, it follows from (3.13) that
[|@xttn, — QrUntp|| = 0asn — co.
Hence, {Qxun }22, is a Cauchy sequence in Banach space B,
then, there exists u* € B such that

lim Qu, = lim Pyu,_1 =u".
n—oo n—o0
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With continuity of (Q and commutativity of P and ), we have the
following:

Qu* = Q( lim Qu,) = lim Q%u, (3.14)

n— oo n—roo

Qu* = Q( lim Pyu,) =

n—oo

(3.15)

lim
n—oo

Thus, we have

1PA(Qua) = Py || <A(#111Q%n — Qu,

1Q%urn — Pr(Quq) ||, [|Qu* — Pyu*]],
([1Q(Qun) — Px(Qun)I[)"

([|Qu™ — Px(Qun)|[)”

([1Q(Qun) — Pru’[]),

[|Qu™ — Px(Quy)||

(1Q(Qun) = PA(Qua)I)™)-
A(11Q%u, — Qul,

1Q%un = P(Qua)ll, || Qu* = Pu’,

(1Q%un — PA(Qua)I)"

(IlQu" ~ Pr(Qun) )"

(HQQUn - PXU*H)?

1Qu* = Px(Quy)|

(102 — PrQua)l)™]). (316

Applying (3.14) and (3.15) into (3.16), as n — oo gives

1Qu* = Pl <A(4lllQu" = Qu*|l

1Qu” — Qu||, [|Qu” — Pyu™|],
([1Qu* — Qu™)[])"

(IQu" — Qu)|)"(|Qu™ — Pyu”l]),
1Qu” — Qu||

(llQu" = Qu7)I™)-
=(400,0.lQu" — Pyur’[1,0,0))
<u(A x 0) = 1(0) = 0.

Therefore, we have Qu* = Pyu*.

And again, we also have

1Pt — P[] <A(@1l1Qun — Qull

[|[Qun — Pauy)||, [[Qu™ — Pyu™|],
([[Qun — Prun)|])"
(HQU* - P)\Un)H)p(HQun - P)\U*H)a

1Qu" = Pyl Qun — Pruall)™])

Taking limit as n — oo gives

lu = Pyu*(] <A(ollu* = Qul,
[lu = || |Qu" — Py’

(Ilv” = w*[)" ([|Qu* — w™|])”
(Ilu® = Pya™[]), [[Qu” — u™]|

(Il = ) I1)™])
=([llu" = Prar’(1,0,0,0,0])
<P(A x 0) = 9(0) = 0.

This implies that, u* = Pyu*. Hence, Su* = Pyu* = u*.
Now, we prove the uniqueness of this common fixed point.
Suppose not, then there exists u* € B, such that
Qu* = Pyu* = u*, Qu* = P\v* = v*, we have

[lu” = o*[] =[|Paw” = Pro”]|
<A (olllQu - Qv
||QU* - P/\U*H7 HQU* - PXU*Hv
(IQu* = Pyu(])"

(lQv™ = Pxu™[[)P([|Qu” — Pxv™|]),
IQu™ = Pru|]

(IIQu* = Pyu[l,)™)
=A(@lllu* —v*[1,0,0,0,0])
<(A x 0) = (0) = 0.
We conclude that, u* = v*

Corollary 3.4. Given a Banach space (B, ||.||) and let P,Q :
B — B be commuting and an enriched Jungck-contraction. If
is continuous and P(B) C Q(B), then:

(i) Py and Q have a unique common fixed point u*;

(ii) There exists A € (0, 1] such that the Jungck-Schaefer itera-
tion { Quy, 152, converges to u*, the unique common fixed point
of Py and Q, for any ug € B.

Proof: This follows the same line of argument of the prove of
Theorem 3.1.

Corollary 3.5. Given a Banach space (B, ||.||) and let P,Q :
B — B be commuting and an enriched 1 — Jungck-contraction.
If Q is continuous and P(B) C Q(B). Then:

(i) Py and Q have a unique common fixed point u*;

(ii) There exists A € (0, 1] such that the Jungck-Schaefer itera-
tion {Qup, }5% converges to u*, the unique common fixed point
of Py and Q, for any uy € B.

Proof: This follows the same line of argument of the prove of
Theorem 3.2.

The below theorems established unique common fixed
point of sequence of generalized enriched Jungck operators.

Theorem 3.6. Given a Banach space (B, ||.||), and S a contin-
uous self map operator on B. If S commute with each {T;}%_, :
B — B suchthat T; is a sequence of generalized enriched Jungck
contraction and T;(B) C S(B) (for each ). Then:
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(i) All (T;;) » and S have a unique common fixed point u*; and
(ii) There exists A € (0, 1] such that the Jungck-Schaefer iter-
ation { S, }52, defined by

Stp1 = (1 —X)Suy, + AT;u,, n >0, (3.17)

converges to u™, for any ug € B.
Proof: Since ¢ > 0, there are two possible cases to be considered
(iec=0andc > 0).
Case 1: For ¢ = 0, then for each i inequality (2.1) becomes
[Ty — Tooll <6{11Su — Svll,
1S — Tyull, IS0 — Tioll,
([Su = Tiul)" ([|Sv — Tyul])?
([Su = Tivl]), [[Sv = Tiul|
(11 — Tyl ™).
Now, since T;(B) C S(B) (for each i), and by Jungck iteration,
Suy = Tyuq (for each 1), taking any ug € B, for eachi € N, we
have
[Thuo — Thua|| <@[[|Suo — Sul,
|[Suo — Truol|, |[Sur — Tyual],
|[Suo — Thuol])"
([[Sur = Tyuo|)P(|[Suo — Thwa |]),
|[Sur — Thuol|([|Suo — Truo|[)™]
=¢[[|Suo — Su|],[|Suo — Su ],
|[Sur = Suzl], (|[Suo — Sual])"
(I[Sur = Sua|[)P([[Suo — Suzl),
|[Sur — Sur[[([|Suo — Sua|])™],

ie
|[Sur — Sua|| <¢[||Suo — Suill,
||Su0 _SulHa
[|Suy — Susll,0,0]
§k||Su0 — SU1H
Also,

|[Suz — Susl|| <¢[[|Sur — Suall,
[[Su1 = Sual|,
[|Sug — Susll,0,0]
<k.||Suy — Sus||
=k2.||Sup — Suyll,
continue this way, we have
|| Titn—1 — Tiun|| =||Stn — Stipq1]|
<@[|[Supn-1 — Sunl|,
|[Stun—1 — Sugll,
[|Supn — Sunt1ll,0,0]
<Kk"™.||Sug — Suq|.

That is

[|Stun — Stupt1|] <E™.||Sug — Sui|| — 0,

as n — Q.

Hence, {Su, }22 is a Cauchy sequence in B, then, there exists
u* € B such that for each i

lim Su, = lim Tju,_1 = u".
n—oo n—oo

With continuity of S and its commutativity with each T;, we have
the following:

Su* = S(lim Su,) = lim S?u,

n—roo n—roo

(3.18)

Su* = S( lim Tyu,) = lim (STu,) = lim (T;Suy)
n—00 n—o0o n—00
(3.19)

Thus, using our contraction condition again with u = Su,, v =
u*, we have, for each T;

IT:(Sun) — Tow™|| <o[|(S(Sun)
— Su™[[, [[S(Sun) = Ti(Sun)|,
[1Su” = Tiu|],
15 (Szn) = Ti(Sun)|"
(I[Su® = Ti(Sun)|])”
1S (Sun) — Tiw™||,
1Su* = Ti(Sun)l|
(15 (Sun) = Ti(Sun)[))™].

Using the continuity of S and taking limits in the above together
with the application of (3.18) and (3.19) yield,

15%un — Tyu*|| <[][S%uy — Su’|l,
15%un — Ti(Sun)|], ||Su™ — Tiu®|,
(115%un — T;(Sun)l)"
1Su* = T5(Sun)[P
15%un — Tru|l,
[1Su® = Ti(Sun)||
(115%un — T;(Sun))™,
asn — oo we have,
1Su* — Tor|| <g[l|Su” — Su’||,
[1Su” = Su™[], [|Su” = Tiu|],
(I1Su* = Su™[])"
ISu” — Su|P||Su* — (T3) v,
[1Su® = Su[[([|Su” — Su™|[)™]
=¢(0,0, ||Sz* — T;u*||,0,0)
<k™0=0.
Hence, Su* = T;u*. And this implies that Su* = u* = T;u*.
Now, for the uniqueness of the fixed point. Suppose not, then
there exists u* € B such that Tyu* = Su* = u*, and Tjv* =
Sv* = v*, and we have,
lu” = ™| =||Tiu” = Tiv™|
<¢||Su* — Sv*||,
1Su® = Tyu|], [[Sv™ = Tiv™|],
(I[Su* = Tiu™[])"
150" = Tow™|P[|Su” — Tiv™|],
150" = Ty ||(||Su” — Tiu®)™],
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S0,

= o) <ollla” — o],
lw™ = w™[, [lv* = "],
(™ = |)" ([0 = w™[])?
[lu* =7,
[lv* = " ||(f[u” —w"[])™]
:¢(||U*7U*||70’0a0’0)
<k.0 =0.

Hence u*™ = v*.

Case2: When ¢ > 0. Considering iteration defined by

(3.17) and for A = ;11, then we have that

(3.20)

hence, an enriched generalized Akram-Jungck contraction
becomes

152 (5 sv)
+Tu=Toll < A(9[lISu - Sl

1St = (T:)xu,

10 = (@)ell, (ISu ~ (To)aul)”

(IS = Tya [y (|8 — Too])).

150 = Toall (11w = Toul)™))

We have that

I(T)re = (T)avll <A(ll1Shu = Saoll
1S3 = (Taall, [[$x0 = (T)ell,
(I[Sxu = (Ti)aul])"
(11530 = (Txull)?([1Sxu = (T)oll).
[[Sxv = (T3) x|

(I1Sxu = (T)xul))™]).

(3.21)

Now, considering Jungck-Schaefer iterative process
{Su,}22,, which actually coincides with Jungck iteration
associated with T i.e

Sun = (E))\un—L

Let u = u, and v = Uy 1, SO

[1Sty — Stni1|| = |[(Ty)atn—1— (T;)aun|| (foreachi),

that is
[Su1 — Suz|| =|[(T1)xuo — (T1)au1l|
<A(6ll1Suo — S,

|[Sug — (T1)auoll, [[Sur — (T1)ruall,
([[Suo — (T1)auol|)"

([[Su1 — (T1)auol])?

([ISuo — (T1)awal]),

|[Sur — (T1) suo|

(110 — (T1)xuol))™)

=2 (9ll1Suo - Suill

|[Sug — Suill,||Sur — Suzl|,
([|Suo — Sux[)"(|Sur — Sua )P
(||Suo — Susl)),

1S = Sua[(]|Suo — Sur|))™])
=A(@ll1Suo — Sur]|.[|Suo — S|l

Sus = Sus]],0,0])
<pu(||Suo — S

where y = X\ x k,thatis

[|Suy — Sua|| < p(]|Sup — Suq]). (3.22)
Inductively from (3.22) we have
|[Sun = Stng1|| <p([|Sun—1 — Sual])
§N2(||Sun—2 - Sun—lm
<413 (||Stun_s — Stun_a])
<p™([|Suo — Suall).
ie
[1Stun — Stnt1|| < p"(||Suo — Suq|)- (3.23)

By repeated application of triangle inequality on (3.23), for
any p € N we have:

(L —p?
18n = Sttripl] <= (1500 - Sl

—0, asn — oo (3.24)

Hence, {Su,, }52 is a Cauchy sequence in Banach space B,
then, there exists u* € B such that

lim Syu, = lim (T;)\tup—1 = u*. (for each )
n— oo n— o0

With continuity of S and commutativity of each (7;), and
S, we have the following:

Su* = S( lim Su,) = lim S?%u,,

n— oo n—oo

(3.25)

Su* S( lim (T3)aun)

n— oo

lim (S(T;)xun)

n— oo

lim ((T5)3Su,).

(3.26)
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Thus, using inequality (3.21), with u = Su,, and v = u*, we
have

(T)A(Sun) = (T || <A (6011570 = Su”]l
5% = (T)x(Sun);
ISu* = (T,
(1S (Sun) = (T)r(Sun)l)”
(IISu* = (T)a(Sun)])”
(1S (Sun) = (T)ru")),
ISu” = (T)r(Sun)|
(1S (Sun) = (To)r(Sun)l)™))
=A(S1115%un = Su'l,
1% = (T)r(Sun);
IS = (T)x,
(112 = (T)r(Sun) 1)
(IIu* = (T)a(Sun)])”
(I1%un = (T)su" ),
1" = (T)r(Sun)|
(115%un = (T)A(Sun)l)™])-
(3.27)

Applying (3.25) and (3.26) into (3.27), as n — oo gives

1w = (T)vu || <A(of|1Su* — Su)

[[Su™ — Su|], |[Su™ — (Ti)ru™],
([[Su”™ = Sum)[)"([|Su” — Su)|])?
(I1Su™ — (T3)au™|]),

IS = Se*[|(l|Sw* ~ Sw)[})™))
=2 (610, 0,[[Sxu" = (T)x"[1,0,0))
<u(0) = 0.

Therefore, we have S u* = (T}) \u*.

And again by inequality (3.21), we also have

(T3 = (Tae*|| <A(6ll[Sun — S,

[Sun — (T3) un)|l,
[[Su™ = (T3)au]],
(1Sun = (T5)aun)||)"
(I[Su* = (T3)xun)|])”
([Sun — (Ti)au™|),
[[Su™ — (T;) aun|

(1St = (T)xual)™)-

Taking limit as n — oo gives

= ([ <A (ol — Sl — ],
A NN 1

(llsu* = w)y?
(Ihw* = (@)aw ), 18u* = w|
(Il = ) 11)™])

(6" = (T)u"]1,0,0,0,0])

<u(0) = 0.

This implies that, u* = (T;)\u*.
Hence,
Su* = (T;)u* = u*.
Now, we prove the uniqueness of this common fixed point.
Suppose not, then there exists u* € B, such that
Su* = (T;) u* = u*, Sv* = (T;)\v* = v*, we have the
following:

(T au™ = (To)av™|

[|u® — o]

< A(elllsu - 50,
1S = (T,
18" = (Tl
(15w = (Txe” )"
(150" = (T)au[])?
(15w = (T)xe* ),
150" = (T’
(15w — (T)ru”ll,)™))
= A(@lllu” = v11,0,0,0,0])
< w0)=0.

Hence, u* = v*

Theorem 3.7. Given a Banach space (B, ||.||) and @ a contin-
uous self map operator on B. If Q commute with each { P;}*_; :
B — B such that P; is a sequence of generalized enriched -
Jungck contraction and P;(B) C Q(B) (for each i). Then:
(i) All (P;) » and S have a unique common fixed point u*; and
(ii) There exists A € (0, 1] such that the Jungck-Schaefer iter-
ation {Quo, } 22, defined by

Qupt1 = (1 = N)Quy + APuyp, n>0 (3.28)

converges to u*, for any ug € B.

Proof: Just like the prove of theorem 3.5, we have two possible
cases to consider (i.e c = 0 and ¢ > 0).

Casel: For ¢ = 0 : Taking any ug € B, for eachi € N, we
have

[ Piun—1 = Piun|| =||Qun — Quat]]
<o[l|Qun—1 — Quyl|,
|Qun—1 — Qual|,
|Qun — Qun1]],0,0]
<¢"(||Quo — Qual]).
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And using triangle inequality inductively, together with the prop-
erties of 1, we say {Quy 52, is a Cauchy sequence in B, then,
there exists u* € B such that for each i

lim Qu, = lim Pu,_1 =u".
n— oo n— oo

And we continue just as in the prove of theorem 3.5 above.

Case2: (¢ > 0) We have that

|Qup — Qupi1]| () xtn—1 — (i) xun||
P(A|Qun—1 — Quyl|)
7/12()‘”@“7172 — Qun—1]|)
3 (| Qun—3 — Qup—s|)

P (N|Quo — Qual])-

VAN VAN VARRVAN

ie.,

1Qun — Quasall < V" (A|Quo — Quil)  (329)
Using triangle inequality inductively, together with the
properties of 1, we say

{Quy, }5% is a Cauchy sequence in Banach space B, then,
there exists u* € B such that

lim Qyu, = lm (P)aun—1 = u”. (for each 1)
n—oo n—oo

The rest of the prove follows the same argument as that of

theorem 3.5 above.

Corollary 3.8. Let (B, ||.||) be a Banach space and let S be
a continuous self map operator on B. If S commute with each
{T;}%_, : B — B suchthat T} is a sequence of enriched Jungck-
contraction and T;(B) C S(B) (for each i). Then:
(i) All (T};) » and S have a unique common fixed point u*; and
(ii) There exists A € (0, 1] such that the Jungck-Schaefer iter-
ation {Suy, } 52, defined by

Supt1 = (1 —N)Sup + ATup, n>0 (3.30)

converges to u*, for any ug € B.

Proof: This follows the same line of argument of the
prove of theorem 3.5.

Corollary 3.9. (B, ||.||) be a Banach space and let S be a contin-
uous self map operator on B. If S commute with each {T;}%_, :
B — B such that T; is a sequence of enriched 1-Jungck contrac-
tionand T;(B) C S(B) (for each ). Then:

(i) All (T}) » and S have a unique common fixed point u*; and

(ii) There exists X\ € (0, 1] such that the Jungck-Schaefer iter-
ation {Su,, }°2 ), defined by

Stpi1 = (1 —XN)Sup + \Tu,, n>0 (3.31)

converges to u*, for any ug € B.

Proof: This follows the same line of argument of the prove of
Theorem 3.7.

4. Approximating common fixed point of com-
patible enriched Jungck-generalized con-
tractive mappings

The remaining part of this paper focuses on the weaker
form of commuting maps for the existence and uniqueness

of common fixed point of the above discussed generaliza-
tions of enriched Jungck contractions.

Theorem 4.1. Let (B, ||.||) be a Banach space and let S be a con-
tinuous self mapping on B. If S is compatible with each {T;}%_, :
B — B suchthat T; is a sequence of generalized enriched Jungck
contraction (i.e Definition 2.3) and T(B) C S(B), Then:

+ All (T}) and S have a unique common fixed point w;
and
+ there exists A € (0, 1] such that the Jungck-Schaefer
iteration { Sy, }52, defined by
SunJrl - (E)Aun
= (1-X)Su, + ATu,, n>0, (4.1)
converges to w

Proof. The prove of second part is the same argument as that
of theorem 3.6 above. That is,

lim Supyq = lim (T;)au, = w, (4.2)

and by continuity of S, we have from (4.2)
lim S(Su,) = Sw,

n—oo

Now, since S and T; are compatible for each i and
Stpy1 = (1) aun = (1 — X)Suy, + ATuy,

then, foreachi, (T;), and S are also compatible. Therefore,
by Lemma 2.12, we have

lim (T;)x\Su, = Sw.
n— o0
From inequality (3.21), with v = Su,, and v = u,,, we have
I(T3) A Sun — (T;) aun| SA((b[HS(Sun) = Sunll,
1S (Sun) — (Ti)aSunl|,
[Swn — (T3)aunll,
([1S(Sup) = (T3)rSun|])"
([1Sun = (Ti)aSunl|)”
([1S(Sun) — (T) aunl]),
|[Swn — (T) xSunl|
(1S(Sun) = (To)rSual)™]).
asn — oo we have
15w = w]l <A(lllSw — wll, [|Sw - Swll,
|[w —wl], ([|Sw — Sw][)"

(Ilw = Sell)?
(11w = wl]), Jhw = S
(5w = Swl)™])

:A(qﬁ[HSw —~ w||,0,0,0,0)m])

=u(0) = 0.
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— Sw=w.
Again by Lemma 2.12 (b), together with the fact that S is
continuous and
T(B) C S(B), = (T;), is also continuous. Then, we
have
(T;) w = Sw = w,

and
im S(Ti)aun = (Ti) aw.
Now, we prove the uniqueness of the common fixed point.
Suppose not, then there exists w* € B, such that
Sw* = (T;)\w* = w*, Sv* = (T;)\v* = v*, we have
the following:

(T aw” — (Ti)ao” |

A(gllIsw — sv,

1Sw* — (T)aw*|], |1Sv* — (T)av*],
(1Sw* — (T)aw*|))"

(IS0 — (T)aw" )P

(IISw* — (T)ae"])),

150" = (T))ae”|

(I1Sw* = (T)aw(l,)™])

Al = 0*]1,0,0,0,0))
1(0) = 0.

[Jw® — ™|

IN

IN

Hence, w* = v* O

5. Conclusion

We have proved the existence and uniqueness of common
fixed points of enriched-Jungck contractions, a generaliza-
tion of enriched contractive definition of Berinde and Pacu-
rar [7] in line with the result due to Akram [5] and Olatinwo
and Omidire [6] in a Banach space setting. It is worth noting
that our results have reinforced the convergence of Jungck-
Schaefer iterative procedure to the unique common fixed
points of more general class of enriched contraction defi-
nitions involving pair of commuting and compatible map-
pings. We extended the results in [7] to pair of commuting
and compatible operators called, generalized enriched Jungck-
contractions. We proved corresponding fixed point theorems
for these type of operators and for sequences of general-
ized enriched Jungck-contractive pair of compatible oper-
ators. Our results unify, generalize and extend results in
[4,5,6,7,16], and many other related results in literature.
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