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ABSTRACT 

We employ the orthonormality of the Legendre polynomials to deduce binomial identities. The harmonic numbers Hn are 

connected with the derivatives of binomial coefficients, this fact allows to deduce identities involving the Hn. 
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INTRODUCTION 

Legendre polynomials are given by [1-3]: 

 𝑃𝑛(𝑥) =
1

2𝑛
 ∑  (−1)𝑘

⌊
𝑛

2
⌋

𝑘=0 (
𝑛
𝑘
) (
2𝑛 − 2𝑘

𝑛
) 𝑥𝑛−2𝑘,          𝑛 ≥ 0,                  (1)  

with the property 𝑃𝑛(1) = 1  ∀ 𝑛, then from (1): 

                         ∑  (−1)𝑘
⌊
𝑛

2
⌋

𝑘=0 (
𝑛
𝑘
) (
2𝑛 − 2𝑘

𝑛
) = 2𝑛 .                                                       (2) 

Besides, we have the orthonormality relation: 

                        ∫  𝑃𝑚(𝑥)
1

−1
𝑃𝑛(𝑥) 𝑑𝑥 =

2

2𝑛+1
 𝛿𝑚𝑛 ,                                                                     (3) 

that is: 

                        ∫  𝑥𝑚
1

−1
 𝑃𝑛(𝑥) 𝑑𝑥 = 0,       𝑚 < 𝑛,                                                            (4) 

                       ∫  𝑥𝑛
1

−1
 𝑃𝑛(𝑥) 𝑑𝑥 =

2𝑛+1

(2𝑛+1) (
2𝑛
𝑛
)
=

2𝑛+1 (𝑛!)2

(2𝑛+1)!
=

2 (𝑛!)

(2𝑛+1)‼
  .                             (5) 
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If  𝑚− 𝑛 = odd integer then  𝑥𝑚 𝑃𝑛(𝑥)  is an odd function, hence: 

                        ∫  𝑥𝑚
1

−1
 𝑃𝑛(𝑥) 𝑑𝑥 = 0,          𝑚 − 𝑛 = 1, 3, 5, …                                           (6) 

In Sec. 2 we employ (3) and the Schmied’s formula [4] to obtain the expression: 

                       ∫  𝑥𝑚
1

−1
𝑃𝑛(𝑥) 𝑑𝑥 =

2𝑛+1

𝑚+1
 
(
𝑚+𝑛

2
𝑛
)

(
𝑚+𝑛+1

𝑛
)
 ,         𝑚 − 𝑛 = 0, 2, 4, …                          (7) 

which implies (5) if  𝑚 = 𝑛. We also use (1), (4) and (7) to deduce binomial identities similar to (2). 

It is well known the property: 

                      
𝑑

𝑑𝑥
(
𝑥 + 𝑚
𝑛

) = (
𝑥 +𝑚
𝑛

) ∑
1

𝑗+𝑥+𝑚−𝑛

𝑛
𝑗=1   ,                                                        (8) 

in particular: 

                    [ 
𝑑

𝑑𝑥
(
𝑥 + 𝑚
𝑛

) ]𝑥=𝑛−𝑚 = 𝐻𝑛 ,            [ 
𝑑

𝑑𝑥
(
𝑥
𝑛
) ]𝑥=−1 = (−1)𝑛+1 𝐻𝑛 ,                 (9) 

for the harmonic numbers [5]: 

                     𝐻𝑛 = ∑
1

𝑟

𝑛
𝑟=1  ,          𝑛 ≥ 1,           𝐻0 = 0.                                                         (10) 

In Sec. 3 we employ (8) and (9) to deduce identities involving the quantities (10). 

Schmied’s Formula 

In [4] we find the following relation of Schmied (2005): 

                     𝑥𝑚 = ∑  
𝑚! (2𝑙+1)

2
𝑚−𝑙
2   (

𝑚−𝑙

2
)! (𝑚+𝑙+1)‼

𝑙=𝑚,𝑚−2,…  𝑃𝑙(𝑥) ,                                                   (11) 

where, we can multiply by 𝑃𝑛(𝑥), to integrate in [-1, 1], and apply (3), to obtain (7) for 

         𝑚 − 𝑛 = 0, 2, 4, … 

Now we use (1) into (4) and (7) to deduce the result: 
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                     ∑  (
𝑛
𝑘
)

⌊
𝑛

2
⌋

𝑘=0 (
2𝑛 − 2𝑘

𝑛
) 

(−1)𝑘

𝑚+𝑛+1−2𝑘
=

{
 
 

 
 
0,                             𝑚 < 𝑛

4𝑛 (
𝑚+𝑛

2
𝑛
)

(𝑚+1) (
𝑚+𝑛+1

𝑛
)
 ,      𝑚 > 𝑛

                      (12) 

for  𝑚+ 𝑛 = 2, 4, 6, … Similarly: 

                    ∑  (
𝑛
𝑘
)

⌊
𝑛

2
⌋

𝑘=0 (
2𝑛 − 2𝑘

𝑛
) 

(−1)𝑘

2𝑛+1−2𝑘
=

4𝑛 (𝑛!)2

(2𝑛+1)!
 ,              𝑛 = 0, 1, 2, …                       (13) 

Remark- From [6] we have the formula: 

         ∑  (−1)𝑘𝑛
𝑘=0 (

𝑛
𝑘
) (
𝑧 + 𝑘𝑦
𝑛

) = (−𝑦)𝑛 ,         𝑦 ≠ 0,                                             (14) 

which, for 𝑦 = −2  and  𝑧 = 2𝑛 is equivalent to (2) because  (
2𝑛 − 2𝑘

𝑛
) = 0  for  𝑘 > ⌊

𝑛

2
⌋. 

Harmonic Numbers 

We have the expression [6]: 

                     𝑥𝑛 = ∑ 𝑗! 𝑛
𝑗=0  (

𝑥
𝑗) 𝑆𝑛

[𝑗]
 ,                                                                                      (15) 

where,  𝑆𝑛
[𝑗]

 are Stirling numbers of the second kind [6- 8]. Now (9) and  [ 
𝑑

𝑑𝑥
(15) ]𝑥=−1  imply: 

                   ∑  (−1)𝑗𝑛
𝑗=1  𝑗!  𝐻𝑗  𝑆𝑛

[𝑗]
= 𝑛 (−1)𝑛 ,       𝑛 ≥ 1.                                      (16) 

We can verify (16), in fact [6, 9]: 

                   𝐻𝑗 =
(−1)𝑗

𝑗!
 ∑  (−1)𝑞

𝑗
𝑞=1  𝑞 𝑆𝑗

(𝑞)
 ,                                                   (17) 

for the Stirling numbers of the first kind  𝑆𝑛
(𝑚)

, then: 

                   ∑  (−1)𝑗𝑛
𝑗=1  𝑗!  𝐻𝑗  𝑆𝑛

[𝑗]
= ∑  (−1)𝑞𝑛

𝑞=1  𝑞 ∑  𝑆𝑛
[𝑗]𝑛

𝑗=𝑞  𝑆𝑗
(𝑞)
= (−1)𝑛 𝑛,        

by the orthonormality of the Stirling numbers [6]; hence (16) and (17) are reciprocal relations. 

Lanczos [10] used the binomial expansion of Gregory-Newton to obtain the identity: 
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                   ∑  (
𝑥
𝑘
)𝑛

𝑘=0 (
𝑛
𝑘
) 

1

(𝑘+1)𝑚
=

1

(𝑛+1)𝑚
 (
𝑥 + 𝑚 + 𝑛

𝑛
) ,                                          (18) 

where,  (𝑘 + 1)𝑚 =
(𝑘+𝑚)!

𝑘!
 ; then (9) and [ 

𝑑

𝑑𝑥
(18) ]𝑥=−1  allow to deduce the formula: 

                   ∑
(−1)𝑘+1

(𝑘+1)𝑚

𝑛
𝑘=1  (

𝑛
𝑘
)𝐻𝑘 =

1

(𝑚−1)! (𝑚+𝑛)
 (𝐻𝑚+𝑛−1 − 𝐻𝑚−1),         𝑚 ≥ 1.                 (19) 

We have the following expression of Graham-Knuth [11]: 

                   ∑  (
𝑥 + 𝑘)
𝑘

)𝑛
𝑘=0 = (1 +

𝑛

𝑥+1
) (
𝑥 + 𝑛
𝑛

) ,       𝑛 ≥ 0,                                         (20) 

therefore, (9) and [ 
𝑑

𝑑𝑥
(20) ]𝑥=0  imply the property [12]: 

                  ∑  𝐻𝑘
𝑛
𝑘=0 = (𝑛 + 1) 𝐻𝑛 − 𝑛,          𝑛 = 0, 1, 2, … ,                                      (21) 

which is a particular case of the identity [9, 11-15]: 

                  ∑ (
𝑘
𝑚
)𝑛

𝑘=𝑚 𝐻𝑘 = (
𝑛 + 1
𝑚 + 1

) (𝐻𝑛+1 −
1

𝑚+1
 ),                                               (22) 

for  𝑚 = 0. 

In [10] we find the relation:                                            

                   ∑ (−1)𝑘𝑛
𝑘=1 (

𝑥
𝑘
)  𝑘 = (−1)𝑛 𝑥 (

𝑥 − 2
𝑛 − 1

)  ,     𝑛 ≥ 1,                                              (23) 

thus, (9) and  [ 
𝑑

𝑑𝑥
(23) ]𝑥=−1  generate the result [16]: 

                   ∑ 𝑘𝑛
𝑘=1 𝐻𝑘 = (

𝑛 + 1
2

) (𝐻𝑛+1 −
1

2
),                                                                       (24) 

which is deductible from [6, 13]: 

                   ∑ 𝑘𝑚𝑛
𝑘=1 𝐻𝑘 = ∑  (

𝑛 + 1
𝑗 + 1

)𝑚
𝑗=1 (𝐻𝑛+1 −

1

𝑗+1
) 𝑗! 𝑆𝑚

[𝑗]
 ,                                     (25) 

for  𝑚 = 1. 
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We know the expression:                                                               

                     ∑ (
𝑛
𝑘
)𝑛

𝑘=1  
(−1)𝑘+1

𝑘 (
𝑥+𝑘
𝑘
)
= ∑  

1

𝑥+𝑘

𝑛
𝑘=1   ,                                                       (26) 

then,  [ 
𝑑

𝑑𝑥
(26) ]𝑥=0  and (9) allow to obtain the identity: 

                     ∑ (
𝑛
𝑘
)𝑛

𝑘=1  
(−1)𝑘+1

𝑘
 𝐻𝑘 = ∑  

1

𝑘2
𝑛
𝑘=1  ,                                                               (27) 

which can be verified directly via the relation: 

                       𝐻𝑘 = ∑ (
𝑘
𝑗
)𝑘

𝑗=1  
(−1)𝑗+1

𝑗
 ,                                                                (28) 

consequence from (26) for 𝑥 = 0. 
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