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ABSTRACT 

Dengue is an infectious disease affecting tropical and subtropical regions worldwide. It is transmitted to person 

through the biting of infectious aedes mosquitoes. In the paper, SIR model is used to describe the spread of dengue 

disease due to different biting rates of mosquitoes. The host (human) population is divided into three compartments: 

susceptible, infected and recovered. The mosquito population is divided into two compartments: susceptible and 

infected.  Associated basic reproduction number is calculated and a sensitivity analysis is performed to determine 

the relative importance of model parameters to the disease transmission.  

Keywords: Dengue Fever, SIR Model, Biting Rates, Basic Reproduction Number, Sensitivity 

Analysis  

INTRODUCTION 

Dengue is an infectious disease spreading in tropical and subtropical countries. It is a vector 

borne disease transmitted by the female aedes mosquitoes. Four serotypes of the dengue viruses 

DEN 1, DEN 2, DEN 3 and DEN 4 cause the dengue fever. Nowadays, dengue fever is endemic 

in more than hundred countries and it is threatening about 2.5 billion people. During late-

monsoon and pre-monsoon the disease occurs in epidemic form as an outcome of increase in 

breeding places and mosquitoes’ population. 

In recent years, the number of dengue cases has been increasing dramatically and has become a 

greater threat than it has been in the past. Although dengue virus infections have been found in 

our neighbouring country India over a long period of time, there was no documented dengue case 

in Nepal prior to 2004 [1]. Nowadays, the disease is considered as an emerging disease in Nepal.  

To control the dengue disease effectively, one should understand the dynamics of the disease 

transmission and take all of the corresponding details into account. Kermack and McKendrick 

contributed on the development of the mathematical theory of epidemics [2]. The authors 

considered three compartments: Susceptible, Infectious and Removal for the mathematical 

formulation of the model. Esteva and Vargas used SIR model to study transmission dynamics of 

the dengue disease [3].  Different mathematical models are proposed to study different aspects of 

the dengue disease [4 – 9]. 
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MODEL FORMULATION 

To study the transmission process of the dengue fever, host population is divided into three 

compartments: susceptible, infective and recovered. People who are healthy and may potentially 

get infected with dengue virus are considered to be in Susceptible compartment, people who are 

infected with dengue and able to transmit the disease are considered to be in Infective 

compartment and people who have recovered from dengue disease are considered to be in 

Recovered compartment. 

The population of mosquitoes is divided into two compartments only; mosquitoes that may 

potentially become infected with dengue virus (Susceptibles) and mosquitoes that are infected 

with dengue (Infectives). The recovered class in the mosquito population is not considered as the 

infection period of the mosquitoes ends with their death. 

For the formulation of model equations, the host population divided are denoted by -
ℎ𝑠(susceptible),  ℎ𝑖(infective) and ℎ𝑟(recovered). The mosquito population divided are denoted 

by 𝑚𝑠(susceptible) and 𝑚𝑖(infective).  

 

Figure 1: Flow chart of SIR model of dengue disease 

The systems of differential equations which describe the dynamics of the dengue disease [3] are: 

For human population: 
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For mosquito population: 
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Here, ℎ𝑛 is the total host population; ℎ𝑠 , ℎ𝑖 , ℎ𝑟 respectively are the number of susceptibles, 

infectives and recovered hosts;  𝑚𝑠 , 𝑚𝑖 respectively are the number of susceptibles and 

infectives in the mosquito population,  ℎ , ℎ  respectively are the birth/death rate and the 

recovery rate in the host population; 𝐴, 𝑚µ respectively are recruitment rate and the death rate in 

mosquito population; ℎ𝛽 , 𝑚𝛽  respectively are the transmission probabilities from mosquito to 

human and human to mosquito; and 𝑏 is the biting rate of mosquito. 
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   and using the equations (3), above system of equations for 

human and mosquito population can be reduced to the following three equations; 
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where, 𝛼 =
𝑏ℎ𝛽𝐴

ℎ𝑛𝑚𝜇
 ,  𝛽 =   ℎ +  ℎ ,  𝛾 = 𝑏𝑚𝛽, 𝛿 =  𝑚𝜇. 

DISEASE FREE EQUILIBRIUM POINT 

The disease free equilibrium point of the system (4) is a steady state solution of the system. In 

disease free situation, the variables 0,  0,  0i r ih h m   . So, from the system of equations (4) 

0,  0y z   and 1x  .  Hence, the disease free equilibrium point of the system (4) is (1,0,0) . 

BASIC REPRODUCTION NUMBER 

The basic reproduction number, denoted by 0R , is defined as the average number of secondary 

infections that occur when one infective is introduced into a completely susceptible host 

population.  
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Using the next generation matrix method [9], the basic reproduction number of the present model 

is obtained as  

2
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If 0 1R  , the infection will die out over a period of time and if 0 1R  , the disease will take hold 

and infection can spread through the population. 

ENDEMIC EQUILIBRIUM POINT 

From the system of equations (4), we obtain two equilibrium points 

(1, 0, 0) and  (
ℎ𝜇𝛾+𝛽𝛿

𝛾(ℎ𝜇+𝛼)
,

ℎ𝜇(𝛼𝛾−𝛽𝛿)

𝛽𝛾(ℎ𝜇+𝛼)
,

ℎ𝜇(𝛼𝛾−𝛽𝛿)

𝛼(ℎ𝜇𝛾+𝛽𝛿)
) 

The first point is disease free equilibrium point. The second equilibrium point if exists is called 

endemic equilibrium point. The second point exists if 0   . Also, 0    if 0 1R  . 

Hence, the endemic equilibrium point exists if 0 1R  . 

Table 1:  Parameters and their values  

Parameters Description Values 

ℎµ Birth/Death rate of hosts 0.0000397 

𝑚µ Death rate of mosquitoes 0.071429 

ℎ Recovery rate 0.14286 

𝑏 Biting rates variable 

ℎ𝑛 Total host population 50000 

A Recruitment rate of mosquitoes 5000 

ℎ𝛽 
Transmission probability of dengue virus from the mosquito 

population to the human population 0.75 

𝑚𝛽 
Transmission probability of dengue virus from the human 

population to the mosquito population 1 
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SENSITIVITY ANALYSIS   

Sensitivity Analysis describes the importance of each parameter in the transmission of the 

disease. We use the analysis to discover the parameter that has high impact on the basic 

reproduction number 0R . 

Definition [10]: The normalized forward sensitivity index of 0R  that depends differentiably on a 

parameter   is defined as 

0

0

0R R

R











   (6) 

Table  2: Sensitivity indices of 0R evaluated at baseline parameter values 

Parameters (𝜂) Baseline values Sensitivity indices ( 0R

 ) 

𝑏 0.25 + 1 

𝐴 5000 + 0.5 

ℎ𝛾 0.14286 - 0.49 

Using the definition, the sensitivity indices found are listed in Table 2. Here, 0  1R

b    means 

that increasing (or decreasing) the biting rate 𝑏 by 10% increases (or decreases) always 0R by 

10%,  0  0.5R

A    means that increasing (or decreasing) 𝐴 by 10% increases (or decreases) 

always 0R by 5%, 0  0.49R

h
    means that increasing (or decreasing) h by 10% decreases (or 

increases) always 0R by 4.9%. Table 2 reflects that biting rate of mosquito 𝑏 is the most positive 

sensitive parameter to the basic reproduction number among the parameters 𝑏, 𝐴 and ℎ𝛾. The 

present paper discusses the numerical results on the impact of the biting rates in the transmission 

of the disease. 

NUMERICAL RESULTS AND DISCUSSION 
The parameter values for the simulation are considered as shown in Table 1. Figure 2 and Figure 

3 describe the behaviour of the solutions showing the dynamics of susceptible host, infected host  

and infected vector population for the biting rates 𝑏  = 0.45 and 𝑏 = 0.68 respectively.  
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Figure 2:  Dynamics of susceptible host, infected host and infected mosquito population. 

From Figure 2, it is noted that the number of susceptible humans decreases significantly to its 

least value in about 30 days. The number of virus infected human increases during the period of 

about 22 days and approaches its maximum level due to interaction with the infected mosquitoes 

and then the infected host population size starts decreasing due to death and recovery from the 

disease. The virus infected mosquitoes take about 17 days to reach its peak value. 

 

Figure 3: Dynamics of susceptible host, infected host and infected mosquito population. 

From Figure 3, it is observed that the number of susceptible humans decreases significantly to its 

least value in about 18 days. The number of virus infected humans increases during the period of 

about 12 days and approaches its maximum level while the virus infected mosquitoes take about 

15 days to reach its peak value.  

From Figure 2 and Figure 3, it is observed that the change in population sizes of the susceptible 

host, infected host and infected mosquito take place more rapidly for the greater values of  biting 

rate. 
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Figure 4: Dynamics of susceptible host population with different biting rates. 

Figure 4 describes the dynamics of susceptible hosts with different biting rates. It is seen that the 

susceptible host population takes about 90 days for 𝑏 = 0.25; about 30 days for 𝑏 = 0.45; about 

25 days for 𝑏 = 0.50 and about 18 days for 𝑏 = 0.68 to reach its least value. Hence, for the 

increased values of biting rates, the susceptible host population decreases more rapidly.  

 
Figure 5: Dynamics of infected host population with different biting rates. 

From Figure 5, it is observed that the infected host population takes about 35 days to reach its 

peak value for 𝑏 = 0.25; about 18 days for 𝑏 = 0.45; about 16 days for 𝑏 = 0.50 and about 13 days 

for 𝑏 = 0.68. Thus, the number of infected hosts increases quickly with the increase in biting 

rates. 
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Figure 6: Dynamics of infected mosquito population with different biting rates. 

From Figure 6, it is seen that the dynamics of infected mosquito population is very similar to the 

dynamics of infected host population. For different biting rates both the populations change in 

the same way (Figure 5 and Figure 6). The results show that we can reduce infectives in both 

host and vector population by controlling the biting rates of mosquitoes. 

 

Figure 7: Basic reproduction number with different values of biting rates. 

With the increasing values of biting rates of mosquitoes, the value of basic reproduction number 

increases (Figure 7). For 𝑏 < 0.1,  𝑅0 < 1  and for 𝑏 > 0.1,  𝑅0 > 1 . The results show that for 

the biting rates less than 0.1, the disease dies out and the disease becomes endemic for the biting 

rate greater than 0.1 over the time. Thus, biting rates of mosquitoes contribute in increasing the 

disease transmission. 
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CONCLUDING REMARKS  

The sensitivity analysis is made to identify the most important parameter that has great impact in 

the transmission of the disease among the parameters: recruitment rate, biting rate of mosquitoes 

and recovery rate of host populations. It is observed that the biting rate of mosquitoes is the most 

positive sensitive parameter.  

The study of impact of biting rates in the transmission of the dengue disease shows that the 

increase in biting rates help in increasing the transmission of the disease. A small change in 

biting rates leads to greater change in the number of infectives in both human and mosquito 

population. So, the present study suggests that the strategies that reduce the biting rates of 

mosquitoes can help in controlling the transmission of the disease. 
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