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ABSTRACT 
Being an intense source of neutrons, soft x-rays, ion beams and fast plasma streams, the plasma focus promises 

applications such as fusion energy, advanced microlithography, materials synthesizing and testing, radiation 

diagnostics, medical isotopes and imaging. This paper reviews the scaling laws of neutrons, soft x-rays, ion 

beams and fast plasma streams derived from extensive numerical experiments conducted over the past 7 years. 
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INTRODUCTION 

Plasma focus machines of various energies have been extensively studied as sources of 

neutrons, soft x-rays and energetic beam ions. An exciting prospect is for scaling the plasma 

focus up to regimes relevant for fusion energy studies. However, even a simple machine such 

as the UNU/ICTP PFF 3 kJ machine consistently produces 10
8
 neutrons in deuterium [1].  

Plasma focus machines operated in neon have also been studied as intense sources of soft x-

rays [2-4]. Whilst many recent experiments have concentrated efforts on low energy 

repetitive devices [2-4], other experiments have looked at larger plasma focus devices [5,6]
  

extending to MJ regime.  Numerical experiments are also gaining interest [7,8] with the Lee 

model code [9,10] demonstrating that it computes realistic focus pinch parameters and 

absolute values of  neutron yield Yn and soft x-ray yield Ysxr which are consistent with those 

measured experimentally [8,11-13]. A comparison was made for the case of the NX2 

machine [4], showing good agreement between computed and measured Ysxr [11]. This gives 

confidence that the Lee model code gives realistic results in the computation of Yn and Ysxr.  

 

More recently, we see increasing investigations on the ion beams and plasma streams 

emission from PF devices. The motivation for these studies is the potential applications for 

materials synthesis, and damage studies of candidate wall materials of fusion reactors. Hence 

we have extended our model code to enable numerical experiments to be carried out on 

defining properties of beam ions in various gases [14-16]. In this review, we show the 

comprehensive range of numerical experiments conducted to derive scaling laws on neutron 

yield Yn [17,18] and neon Ysxr [12,19-21], in terms of storage energy E0, peak discharge 

current Ipeak and peak focus pinch current Ipinch obtained from studies carried out over E0 

varying from 0.2 kJ to 25 MJ for optimised machine parameters and operating parameters. 

We also present as yet unpublished results of the scaling of fast ion beam and fast plasma 

streams. 
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THE LEE MODEL CODE 

The Lee model code couples the electrical circuit with plasma focus dynamics, 

thermodynamics and radiation, enabling realistic simulation of all gross focus properties. The 

basic model, described in 1984 [22] was successfully used to assist several projects [23-26].  

Radiation-coupled dynamics was included leading to radiation cooling [27]. The vital role of 

a finite small disturbance speed [28] was incorporated. This version of the code assisted other 

research projects [29-34].
 
 Plasma self-absorption was included in 2007 [35] improving SXR 

yield simulation. The code has been used extensively in several machines [1, 4, 11-21, 23-26, 

30-34]. Neutron yield Yn using a beam–target mechanism [9,10,17,18] is incorporated. 

Insights include current and yield limitations with reduced (very low) static inductance 

[36,37], neutron saturation [38],  radiative collapse [39], current-stepped PF [40-42], 

extraction of diagnostic data [43-51] and anomalous resistance data [52,53].  

a. Computation of Neutron Yield  

 

The neutron yield is computed using a phenomenological beam-target neutron generating 

mechanism described recently by Gribkov et al [54]. A beam of fast deuteron ions is 

produced by diode action in a thin layer close to the anode, with plasma disruptions 

generating the necessary high voltages. The beam interacts with the hot dense plasma of the 

focus pinch column to produce the fusion neutrons. The beam-target yield is derived 

[9,10,17,18] as:        

 Yb- t= Cn ni Ipinch 
2
zp 

2
(ln (b/rp) σ /U 

0.5 
                                          (1) 

where ni=ion density, b=cathode radius, rp= radius of the plasma pinch with length zp, 

σ=cross-section of the D-D fusion reaction, n- branch [55] and U=beam energy. Cn is treated 

as a calibration constant combining various constants in the derivation process.  

b. Computation of Neon SXR Yield 

 

In the code [9,10], neon line radiation QL is calculated as follows: 

                        (2)                            

where in our experiments we take the SXR yield Ysxr = QL within an appropriate temperature 

window [9,10,21].  Zn is the atomic number. 

c. Computation of Beam ion and fast plasma stream properties. 

 

In the latest (RADPF.FIB) the Lee code computes the flux of the ion beams Jb=nbvb where 

nb=number of beam ions Nb divided by volume of plasma traversed is derived from pinch 

inductive energy considerations; and vb=effective speed of the beam ions is derived from the 

accelerating voltage taken as diode voltage U. All quantities are expressed in SI units, except 

where otherwise stated.  The resulting equation [14,15] is given below: 

 

Flux = Jb = 2.75x10
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where M=ion mass, Zeff= effective charge, b=cathode radius, rp=pinch radius and Ipinch=pinch 

current. The parameter fe= fraction converted into beam energy from the inductive energy of 

the pinch.  The extended code computes FIB fluence and flux and energy fluence and flux, 

power flow, FIB damage factor and FIB energy. It also computed FPS energy. Techniques 

used in the code includes a self-consistent check of the energy distribution amongst the 

various energy components of the system including electromechanical energy input into the 

plasma, FIB energy, electron beam energy, radiation losses and FPS energy. 

 

NUMERICAL EXPERIMENTS 

Series of numerical experiments were carried out on machines with storage energies ranging 

from sub-kJ to half MJ searching for optimum neutron yield, neon soft x-ray yield and more 

recently beam and FPS yields by variation of pressure. Some results (as yet unpublished) are 

summarized in the following graphs indicating the scaling of FIB energy and FPS energy 

with current and PF storage energy. 
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Fig 1 Scaling laws for FIB ion beam energy as functions of Ipeak and storage energy E0. 
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Fig 2 Scaling laws for FPS Fast Plasma Stream energy as functions of Ipeak and storage 

energy E0. 

 

These results could be useful as reference data for design or interpretation of target 

interaction experiments for materials fabrication/modification/deposition or for target damage 

studies. They have already been used in the scaling of radiation for consideration of target 

irradiation for production of SLR (short-lived radioisotopes) [55]. 

 

CONCLUSION 

Numerical experiments carried out using the universal plasma focus laboratory facility based 
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on the Lee model code give reliable scaling laws for neutrons production and neon SXR yields 

for plasma focus machines. These have been extended to scaling laws for fast ion beams and 

post-pinch fast plasma streams. The scaling laws obtained are:  

 

For neutron yield: (yield in number of neutrons per shot) 

Yn = 3.2x10
11 

Ipinch
4.5

 ;  Yn = 1.8x10
10 

Ipeak
3.8

; 
   
Ipeak  (0.3 to 5.7), Ipinch  (0.2 to 2.4) in MA. 

 Yn~E0
2.0

 at tens of kJ to Yn~E0
0.84

 at MJ level (up to 25MJ). 

 

 For neon soft x-rays: (yield in J per shot) 

Ysxr = 8.3x10
3
 Ipinch

3.6;  
Ysxr = 6x10

2
 Ipeak

3.2 
;
 
Ipeak  (0.1 to 2.4), Ipinch  (0.07 to1.3) in MA. 

 Ysxr~E0
1.6 

(kJ range) to Ysxr~E0
0.8 (

towards MJ). 

 

For energy of beam ions at exit of a deuterium plasma pinch: (yield in J per shot) 

Ybeam=2.8x10
-7

Ipinch
3.7      

Ybeam= 8.4x10
-7

Ipeak
3.16

 and currents in kA.
 

Ybeam= 18.2E0
1.23

; where Ybeam is in J and E0 is in kJ; over 1 kJ to 1MJ 

 

For energy of FPS at exit of a deuterium plasma pinch: (yield in J per shot.) 

YFPS=2.9x10
-4

Ipinch
2.63

 YFPS=5.9x10
-4

Ipeak
2.25

 where currents are in kA 

And YFPS=81E0
0.97 

where storage energy E0 is in kJ. 

 

These laws provide useful references and facilitate the understanding of present plasma focus 

machines. More importantly, these scaling laws are also useful for design considerations of 

new plasma focus machines particularly if they are intended to operate as optimized neutron, 

neon SXR, FIB ion  or FPS plasma sources. 
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