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ABSTRACT 

The most general linear operator to transform from new sequence space into another sequence 

space is actually given by an infinite matrix. In the present paper we represent some sequence 

spaces and give the characterization of (S  (p),  ) and (S  (p),   ).   
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INTRODUCTION 

A sequence space is a linear space of functions defined on the set of counting numbers.  Thus the 

sequence space is set of scalar sequence (real or complex) which is closed under coordinate wise 

addition and scalar multiplication.  If it is closed under co-ordinate wise multiplication as well, 

then it is called the sequence algebra.  We are concerned mainly on the problem of identification, 

inclusion problem and matrix mapping problems. The study of sequence spaces is thus a special 

case of the more general study of function space, which is in turn a branch of functional analysis. 
The theory of matrix transformations is a wide field in sum ability; it deals with the characterizations of 

classes of matrix mappings between sequence spaces by giving necessary and sufficient conditions on the 

entries of the infinite matrices. The most important applications are  Inclusion, Mercerian and Tauberian 
theorems. 

Here, we begin some definitions and notations:  

 

Normed   Space: Nor med Space is a pair (X,         of a linear space X and norm ||.|| on X. 

 

Banach Space: A Banach Space (X, ||  ||) is a complete nor med space where completeness 

means that every sequence (  )  in  X    with ||      ||→0 as m, n→ , there exists x       

such that ||  -x|| →0 as  n→   
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Para norm: A Para norm ‘g’ defined on a linear space X, is a function: X   having the 

following usual properties: 

 

(i) g(  = 0, where   is the 0 element in X. 

(ii) g(x) = g(-x), for all x      
(iii)  g(x + y) ≤ g(x) +g(y) for all x, y      
(iv) The scalar multiplication is continuous that is     λ (n         g(xn-x)     as 

        λn, λ          xn, x       g(    - λ x)             
(v) g(x) = 0       

 

 

A Para normed Space: 

A Para nor med  space is a linear space X together with a Para norm g. 

The space  ∞(p): Let {  } be abounded sequence of strictly positive real numbers. We define 

     = { x= {  } :  
   
 

 |    
  < } 

For x , y ε        ,we define 

d(x, y)=   
   
 

  |          /M 

Where M = max (1, sup   ).        is a metric space with metric d. 

 If    =p for all k, then we write   for        . Here     is the set of all bounded sequences x 

= {  } of real or complex numbers and is a   metric space with the natural metric 

d(x, y) =   
   
 

 |       |. 

 

 Spaces c(p) and   (p): With {  }, we define  

c(p) ={x = {  } :         →0 as k→  for some     ε C}   and 

c0(p) ={x = {  } :     
  →0 as k→   } 

c(p) and c0(p) are the metric spaces with metric 

d(x , y)  =    
   
 

 |          /M 
,  where M = max (1, sup  ). 

 

The spaces c   and     : If     = p for all k, then we write c and c0 for c(p) and c0(p)  respectively.  

c and c0 represent the sets of all convergent  sequences  and null sequences respectively. 

Note that c and c0 are metric spaces with the metric 

d(x ,y) =  
   
 

 |   -   |. 

In c if we define  (x, y) = | lim(   –  ) |, 

then although  (x, y) =0, this does not always imply that x = y. 
For example if we take    =1/k and   =0 for all k, observe that the other two axioms of a metric are 

satisfied by  Thus   is not a metric on c, but is a semi metric. 

 

Duals: If X is a sequence space, We define 

   = {a=(  ) :      
 
     is convergent for each  x ε X}. 

 

Theorem 1: Let       for every k, then 
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           =          
 
   :           

   
 
    ]} converges        

   1/                
   where    =    

 
       (we assume that    

 
    = o (k       

Proof: Suppose that x            we choose N     so that sup              we write 

 
     

 
    =       

 
             

 
                                     (1) 

Since            
 
           

 
    1/                           

 
    is absolutely 

convergent. By corollary 2 in [3], the convergence of     
 
   (    

   1/Pm ) implies that 

             
   

1/Pm = o. Hence, it follows from (1) that     
 
    is convergent for each 

x       (p). This yields a             
 

. 

Conversely, suppose that a            
 

 , then by definition,      
 
    is convergent for each x 

            
Since e = (1, 1, 1,..)           and x = [    

   1/Pm ]            so, 
   

 
     and    

 
   [    

   1/Pm ] are respectively convergent. By using corollary 2 in [2o], 

we find that 

            
   1/Pm = o. 

Thus, we get from (1) that the series       
 
    converges for each x          . 

Since x            if and only if                                                      It now 

follows from a theorem 2 in [7] that        
 
   1/pk converges for all N     

This completes the proof of the theorem. 

 

Theorem 2:  Let                         

            = S  (p), where S  (p) =               
 
       [    

   -1/Pm ] converges 

and      
 
                 

Proof. Let a   S  (p) and x     o(p). We choose an integer N                  pk   N-1. 

We have       
 
    =       

 
    -          

 
      (m = 1, 2, 3, …). 

Since         
 
                   

 
            

               it follows that, 

      
 
    is convergent absolutely. The convergence of 

   
 
    (    

   -1/Pm ) implies that  

        
   -1/Pi  = o (1)  (m     Hence      

 
    converges for each x           That is, 

a             . 

Conversely, let a                  

                          
 
    converges. Since the sequence x=    

   -1/Pm} by 

choosing   
 

 
                   it follows that    

 
    

 (    
   -1/Pm ) converges  [Because     

   -1/pm      o(p) ] 

To show that      
 
                   let us assume that      

 
                 

then from Theorem 6 , it follows that R  Mo(p) = [        , then there exists a sequence x = 

{1/k}, k        (p) such that 
   

 
    1/k does not converse. Although, if we define 
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y = {   } by     =  
 

 
  

     then,  y     o(p), but      
 
    =     

 
   {  

 

 

 
    } =    

 
    

1/k. 

Hence      
 
    does not converge for y     o(p),  a contradiction is due to the fact that 

a               So 

 

             
             

This completes the proof of the theorem. 

 

MATRIX   TRANSFORMATIONS 

Let X and Y be any two sequence spaces. Let A = (        
     

   

(1           be an infinite matrix of scalar entries. 

               
   

      Where    (x) =       
 
    is a convergent sequence for each n   (n = 

1, 2, 3,…). We say that A defines a matrix map from X into Y and we write A           By (X, 

Y), we mean the class of matrices A such that A                                      
characterization of the classes (S  (p),  ) and (S  (p),   ). We   shall first establish the 

following simple lemma 1. 

 

Lemma 1.  Let X and Y be two sequence spaces, and let    {y ={   }:     (           Y,  

  = 0}, then A         if and only                     
     

 =(        
 

     
 = B 

        With lemma1,. (i,  ii ) in [7] or, Theorem 3 in [7] or, Theorem  5b (i) and Theorem7 in 

[5], a characterization of the classes (          ) or (               ((               )      ( q 

      immediately follows 

In [3] the authors have characterized the spaces (S  (p),    ),  (S  (p), c) and (S  (p),   ) if the 

matrix A satisfy following the conditions: 

 

Theorem 3: Let       for every k then, A   ( S  (p),    ) if 

(i)
    
 

              
        

          . 

(ii)    
 

        
         

 
              

Proof:  We first prove that these conditions are necessary. 

Suppose that A      (p),  ). Since x= (  ) = (        
 ) 

belongs to    (p), the condition (i )holds. In order to see that (ii) is necessary we assume that  

for N>1,      [  
 

   
         

 
     ] =    

Let the matrix B be defined by 

                              B = (   ) = (    
 
     . 

Then it follows from Theorem 1.12.8 that B        (p),   ). Hence, there is a sequence  

x      (p) such that  

                             
   = 1 and       

 
           

We now define the sequence y = (  ) by 

                                                      =    
 
     (k       

                                                      = o. 
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Then y      (p) and        
 
            

 
            

This contradicts that A      (p),  ). Thus, (ii) is necessary. 

We now prove the sufficiency part of the theorem. 

Suppose that (i) and (ii) of the theorem hold. Then               for each n      
 

 

Hence       =       
 
    converges for each n                  x      (p). Following the 

argument used in lemma 1, we find that if x      (p) such that             
   < N, then 

                    
 
         

 

   
         

 
       

                                              [  
 

   
         

 
     ]; 

                                              
This proves that AX     . Hence, the theorem is proved. 

 

Theorem 4:  Let      o, for every k, then A   (S       c ) if and only if 

(i)R   (       c) where R = (     ) = [        
 
     (n, k = 1, 2, 3,…). 

(ii) An [   
 

  
    i]      (n, k =1, 2, 3,…) for all integers, N     

(iii)                     ( k = 1, 2, 3,…). 

Proof: Let us first prove the sufficiency condition. For consider any x   S     , we choose 

N            suppk      
p
k     e write,  

       
 
    =         

 
    _ rn+1, m     

 
        (m = 1, 2, 3,…).                                (2). 

By condition (ii)        
      

 

  
    i] is convergent for each (n = 1, 2, 3,…).Hence, by corollary 

2 in [20] it follows that 

               
 

  
     = o. By condition (i), R               and since x 

  S                                                                               

             
    is uniformly convergent in n and            exists for each (k = 1, 2, 3,…) 

Since                         
      

   
 
    from (2) we find that        

 
    is absolutely and 

uniformly convergent in n. Finally, we have 

             
 
          

 
   . This proves the sufficiency condition. 

The necessities of (iii) and (ii) are respectively obtained by taking x = e = ( 1, 1, 1,…) 

  S          x = [  
 

  
    i]    (k = 1, 2, 3,…),   i   S     .Now consider the necessity of (i).If 

it is not true, then there exists x = (  )         with suppv       = 1 such that               
  

       hough if we define a sequence y = (  ) by 

   =     
 
     (v = 1, 2, 3,…), then y   S      but [       

 
    =        

 
   ]   . This 

contradicts the fact that A   (S       c ) and therefore (i) must hold. 

Before characterizing the class (S      cs ), we add one more notation, for any  

n             

   (AX) =         
   =         

 
      [x          ,  where B = (    ) = [      

 
    ] 

 (n = 1, 2, 3, …).This  complete the proof of the theorem. 
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Theorem 5:  Let      o, for every k, then A   (S          ) if and only if 

(i)C   (          ) where C = (     ) = {     
     

 
        (n, k = 1, 2, 3,…). 

(ii)    [   
 

  
   ]       (n, k =1, 2, 3…) for all integers, N     

(iii)             =            
 
         ( k = 1, 2, 3,…). 

 

Proof: This theorem follows immediately from theorem (4); 

Let us first prove the sufficiency condition. For consider any x   S     , we choose N  
          suppk      pk     e write,  

       
 
    =         

 
    _   , m+1     

 
        (m = 1, 2, 3,…)  and the convergence of 

              
   

 
    ]    implies that  

              1       
     = 0. 

Characterization of             ) , q    follows from Theorem 5 (ii) [9] with lemma 1. 

This completes the proof of the theorem. 
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