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ABSTRACT 
In this paper we introduce weak generalized Meir-Keeler contractions and prove some coupled fixed point theorems 

for two mappings XXXF  :  and XXg :  on a partially ordered partial metric spaces. Our results 

generalize some recent results in the literature, for example the results of Thabet Abdeljawad et.al [1] and Ali Erduran 

et.al [3] . Also, we give some illustrative examples . 
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1  INTRODUCTION AND PRELIMINARIES 

Fixed point theory is an important tool in the study of nonlinear analysis as it is considered to be 

the key connection between pure and applied mathematics with wide applications in economics, 

physical sciences, such as biology, chemistry, physics, differential equations, and almost all 

engineering fields. In the last years, the extension of the theory of fixed point to generalized 

structures as cone metric , dislocated metric , partial metric and quasi-metric spaces has received a 

lot of attention. One of the most interesting is partial metric space was introduced by Matthews 

[14] as a part of the study of denotational semantics of data flow networks. Subsequently, Valero 

[23] and Oltra and Valero [16] gave some generalizations of the results of Matthews.  Romaguera 

[18] proved the Caristi type fixed point theorem on this space.  

 

On the other hand, considering the existence and uniqueness of a fixed point in partially ordered 

sets initiated a new trend in fixed point theory. The first result in this direction was given by 

Turinici [22], where he extended Banach contraction principle in partially ordered sets. Ran and 

Reurings [17] presented some applications of Turinici’s theorem to matrix equations. Worth 

mentioning, Gnana Bhaskar and Lakshmikantham [7] introduced the notion of a coupled fixed 

point in the class of partially ordered metric spaces and also Lakshmikantham and Ciric [12] 

introduced the concept of g -mixed monotone property and proved some coupled fixed theorems 

in metric spaces. Later several authors proved the coupled fixed point theorems in metric and 

partial metric spaces (see e.g [3, 5, 9, 10, 13, 20]). 
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In recent years , many authors generalized Meir-keeler fixed point theorems in various spaces 

which include complete metric and partial metric spaces (see e.g [1, 2, 4, 6,19 ]). Very recently Ali 

Erduran et. al. [3] proved the results of coupled fixed points for single map by using generalized 

Meir-keeler contractions in ordered partial metric spaces and then Thabet Abdeljawad et.al. [1] 

extended the results of [3] for two mappings . In this paper we introduce weak generalized pg - 

Meir-Keeler contractions and prove some coupled fixed point theorems for two mappings 

XXXF  :  and XXg :  on a partially ordered partial metric spaces and generalize the 

results of [1] with a suitable example. First we recall some basic definitions and lemmas which 

play crucial role in the theory of partial metric spaces. 

 

Definition 1.1 [14,15]:  A partial metric on a nonempty set X  is a function  RXXp :  

such that for all Xzyx ,, :   

    (p1)  ),(=),(=),(= yypyxpxxpyx  ,  

    (p2)  ),(),(),,(),( yxpyypyxpxxp  ,  

    (p3)  ),(=),( xypyxp ,  

    (p4)  ).,(),(),(),( zzpyzpzxpyxp    

 The pair ),( pX  is called a partial metric space (PMS).  

 If p  is a partial metric on X , then the function  XXd p :  given by  

 ),,(),(),(2=),( yypxxpyxpyxd p   (1.1) 

 is a metric on X .  

The basic example of partial metric space is  

Example 1.1[14,15]: Consider )[0,= X  with },{max=),( yxyxp . Then ),( pX  is a partial 

metric space. It is clear that p  is not a (usual) metric. Note that in this case yxyxd p =),( .  

Example 1.2 [21]: Let ),( dX  and ),( pX  denote a metric and partial metric space , respectively 

Then the mapping  RXX:  defined  by   

),(),(=),( yxpyxdyx   

 is a partial metric and ),( X is  a partial metric space.   

Lemma 1.1 [2]: Let ),( pX  be a complete PMS. Then   

    1.  If 0=),( yxp  then yx = ,  

    2.  If yx  , then 0>),( yxp  ,  

    3.  If yx = , ),( yxp  may not be 0 .  

   

 Each partial metric p  on X  generates a 0T  topology p  on X  which has as a base the 

family of open p -balls 0}>,),,({  XxxBp  , where }),(<),(:{=),(   xxpyxpXyxBp  

for all Xx  and 0> . 

We now state some basic topological notions (such as convergence, completeness, 

continuity) on partial metric spaces (see e.g. [2, 11, 14,15]).  

Definition 1.2 [14,15]:    

 1.  A sequence }{ nx  in the PMS ),( pX  converges to the limit x  if and only if  

            ),(lim=),( nn xxpxxp  .  
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 2.  A sequence }{ nx  in the PMS ),( pX  is called a Cauchy sequence if 

        ),(lim , mnmn xxp  exists and is finite.  

 3.  A PMS ),( pX  is called complete if every Cauchy sequence }{ nx  in X  

     converges with respect to p , to a point Xx  such that ),(lim=),( , mnmn xxpxxp  .  

 4.  A mapping XXF :  is said to be continuous at Xx 0  if for every 0> , there                

           exists 0>  such that ),()),(( 00  FxBxBF pp  .    

The following lemma is one of the basic results in PMS([2,11,14,15]).  

Lemma 1.2 [14,15]:       

1.  A sequence }{ nx  is a Cauchy sequence in the PMS ),( pX  if and only if it is a  

           Cauchy sequence in the metric space ),( pdX .  

2.  A PMS ),( pX  is complete if and only if the metric space ),( pdX  is complete.    

           Moreover  ),(lim=),(lim=),(0=),(lim
,

mn
mn

n
n

np
n

xxpxxpxxpxxd


  (1.2) 

  Next, we give a simple lemma which will be used in the proofs of our main results. For the 

proofs we refer to e.g. [2,11]. 

Lemma 1.3 [2,11]:  Assume zxn   as n  in a PMS ),( pX  such that 0=),( zzp . Then 

),(=),(lim yzpyxp nn   for every Xy .  

The concept of g -mixed monotone property was introduced by Lakshmikantam and Ciric 

[12] as follows  

Definition 1.3 [12]: Let )  ,( X  be a partially ordered set and XXXF : . Then the map F  

is said to have mixed g  - monotone property if ),( yxF  is monotone g  - non - decreasing in x  

and is monotone g  - non - increasing in y ; that is, for any Xyx , ,  

 XyallforyxFyxFimpliesgxgx  ),(),( 2121  and  

 .),(),( 1221 XxallforyxFyxFimpliesgygy   

Definition 1.4 [12]:  An element XXyx ),(  is called 

)( 1g  a pointcoincidentcoupled    of mappings XXXF :  and XXf :  if   

             ),(= yxFfx  and ),(= xyFfy . 

)( 2g  a pointfixedcoupledcommon     of mappings XXXF :  and XXf :  if  

             ),(== yxFfxx  and ),(== xyFfyy .  

The mappings F  and g  are said to commute if  XyxallforygxgFyxFg ,,        ))(),((=)),((  

      Recently, Gordji et.al. [8] replaced mixed g -monotone property with a mixed strict g

-monotone property and improved the results of [12] .  

Definition 1.5 [8]:  Let )  ,( X  be a partially ordered set and XXXF : . Then the map 

F  is said to have mixed strict g  - monotone property if ),( yxF  is monotone g  - non - 

decreasing in x  and is monotone g  - non - increasing in y ; that is, for any Xyx , ,  

 XyallforyxFyxFimpliesgxgx ),(<),(< 2121  

and  

 .),(>),(< 2121 XxallforyxFyxFimpliesgygy   

Very recently, Thabet Abdeljawad et.al. [1] Introduced the following g -meir-keeler type 
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and strict g -meir-keeler type contraction as follows :  

Definition 1.6 [1]:  Let ),,( pX  be a partial metric space. Let XXXF :  and 

XXg :  . The mapping F  is said to be a g - meir-keeler type contraction if for any 0>  

there exists a 0>)(  such that  

   ,<)),(),,(()(<))(),(())(),((
2

1
 vuFyxFpvgygpugxgp   (1.3) 

 for all Xvuyx ,,,  with )()( ugxg   , )()( vgyg   .  

If XIg = , identity map in the Definition 1.6, gives the following definition of [3].  

Definition 1.7 [3]:  Let ),,( pX  be a partial metric space. Let XXXF :  be a given 

mapping. we say that F  is said to be a generalized Meir-Keeler type contraction if for any 0>  

there exists a 0>)(  such that  

   ,<)),(),,(()(<),(),(
2

1
 vuFyxFpvypuxp   (1.4) 

 for all Xvuyx ,,,  with ux   , vy   .  

Definition 1.8 [1]:  Let ),,( pX  be a partial metric space. Let XXXF :  and 

XXg :  . The mapping F  is said to be a strict g - Meir-Keeler type contraction if there 

exists 1<<0 k  such that for any 0>  0>)(  such that  

   ,<)),(),,(()(<))(),(())(),((
2

 vuFyxFpvgygpugxgp
k

  (1.5) 

 for all Xvuyx ,,,  with )()( ugxg   , )()( vgyg   .  

Based on the Definition 1.6 , Thabet Abdeljawad et.al. [1] proved the folowing results.  

Theorem 1.1 [1]:  Let ),,( pX  be a partially ordered partial metric space. Suppose that X  

has the following properties:   

(a)  If  nx  is a sequence such that nn xx >1  for each 1,2,3=n  and xxn  , then  

           xxn <  for each 1,2,3=n  .  

       (b)  If  ny  is a sequence such that nn yy <1  for each 1,2,3=n  and yyn  , then  

           yyn > for each 1,2,3=n  .  

Let XXXF :  and XXg :  be mappings such that )()( XgXXF   and )(Xg  is 

a complete subspace of ),( pX . Suppose that F  satisfies the following conditions:   

(i)  F  has mixed strict g - monotone property,  

(ii) F  is a g  -Meir-Keeler type contraction ,  

(iii) There exist 0x , Xy 0  such that ).,(    ,  ),(< 000000 xyFgyyxFgx   

Then F  and g  have a coupled coincidence point, that is there exist Xyx ,  such that 

)(=),( xgyxF  , )(=),( ygxyF .   

Theorem 1.2 [1]:   In addition to the hypotheses of Theorem 1.1 , assume that for all 
2** ),(),,( Xyxyx   , there exists 2),( Xba   such that )),(),,(( abFbaF  is comparable to both 

))(),(( ygxg  and ))(),(( ** ygxg .  Further , assume that F  and g  commute and F  is a strict 

g  -Meir-Keeler type contraction. Then F  and g  have a unique common coupled fixed point, 

that is:  ).,(=)(=      ),,(=)(= xyFygyyxFxgx  (1.6) 
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Now, we give the following definitions.  

 

Definition 1.9:  Let ),,( pX  be a partial metric space. Let XXXF :  and XXg : . 

The mapping F  is said to be a weak generalized pg - Meir-Keeler type contraction if for any 

0>  there exists a 0>)(  such that 

  ,<
)),(),,((

)),,(),,((
max)(<))(),(()),(),((max 










uvFxyFp

vuFyxFp
vgygpugxgp  (1.7)  

 for all Xvuyx ,,,  with )(<)( ugxg , )(>)( vgyg  .  

If we replace XIg =  , identity map then, we have  

Definition 1.10: Let ),,( pX  be a partial metric space. Let XXXF : . The mapping F  

is said to be a weak generalized Meir-Keeler type contraction if for any 0>  there exists a 

0>)(  such that  

  ,<
)),(),,((

)),,(),,((
max)(<),(),,(max 










uvFxyFp

vuFyxFp
vypuxp  (1.8) 

 for all Xvuyx ,,,  with ux < , vy >  .  

 

2  MAIN RESULTS 

First we give the following Lemma which can be derived easily from Definition 1.9 and which is 

essential in proving our main result.  

Lemma 2.1:  Let ),,( pX  be a partially ordered partial metric space. Let XXXF :  and 

XXg :  be mappings such that F  is a weak generalized pg - Meir-Keeler type contraction. 

Then    ))(),(()),(),((max<)),(),,(()),,(),,((max vgygpugxgpuvFxyFpvuFyxFp  

for all Xvuyx ,,,  with )(<)( ugxg , )(>)( vgyg .  

 Now, we give our main result.  

Theorem 2.1:  Let ),,( pX  be a partially ordered partial metric space. Let XXXF : and 

XXg :  be mappings such that )()( XgXXF   and )(Xg  is a complete subspace of 

),( pX . Suppose that F  satisfies the following conditions:   

(2.1.1)  F  has mixed strict g - monotone property,  

(2.1.2)  F  is a weak generalized pg -Meir-Keeler type contraction ,  

(2.1.3)  There exist 0x  , Xy 0  such that ).,(>    ,   ),(< 000000 xyFgyyxFgx  

            Suppose that X  has the following properties:   

(2.1.4) If  nx  is a sequence such that nn xx >1  for each 1,2,3=n  and xxn  , then xxn <   

        for each 1,2,3=n  .  

(2.1.5) If  ny  is a sequence such that nn yy <1  for each 1,2,3=n  and yyn  , then 

yyn >   

       for each 1,2,3=n  .  

Then F  and g  have a coupled coincidence point, that is there exist Xyx ,  such that 

)(=),( xgyxF  , )(=),( ygxyF  .  
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Proof:  Let 
2

00 ),(=),( Xyxyx   be such that ),(<)( 000 yxFxg  and  ),(>)( 000 xyFyg  . We 

construct the sequences  nx  and  ny  in the following way.  

Since )()( XgXXF   , we are able to choose 2

11 ),( Xyx   such that ),(=)( 001 yxFxg  and 

),(=)( 001 xyFyg . By repeating the same argument, we can choose 2

22 ),( Xyx   such that 

),(=)( 112 yxFxg  and ),(=)( 112 xyFyg  .  

Inductively, we construct the sequnces {xn} and {yn} such that 

 1,2,=        ),(=)(    ,  ),(=)( 11 nxyFygyxFxg nnnnnn   (2.1) 

 By assumption (2.1.3), we have  

 )(=),(>)()(=),(<)( 10001000 ygxyFygandxgyxFxg  (2.2) 

 Scince F  is a mixed g -strict monotone property , we have  

 ).,(<),(  )(<)( 010010 yxFyxFxgxg   (2.3) 

  

 ).,(<),(  )(>)( 110110 yxFyxFygyg   (2.4) 

Thus  

 )(=),(<),(=)( 211001 xgyxFyxFxg  

Also  

 ).,(>),(  )(>)( 100001 xyFxyFxgxg   (2.5) 

  

 ).,(<),(  )(<)( 101101 xyFxyFygyg   (2.6) 

Thus  

 .)(=),(>),(=)( 211001 ygxyFxyFyg  

Continuing in this way, we get  

  <)(<)(<<)(<)(<)( 1210 nn xgxgxgxgxg  

 

  >)(>)(>>)(>)(>)( 1210 nn ygygygygyg  

Now set  

  .))(),(()),(),((max= 11  nnnnn ygygpxgxgpR  (2.7) 

 From Lemma 2.1 , we have  

 

 .))(),(()),(),((max                                        

)),(),,((

)),,(),,((
max

))(),((

)),(),((
max

11

11

11

1

1






























nnnn

nnnn

nnnn

nn

nn

ygygpxgxgp

xyFxyFp

yxFyxFp

ygygp

xgxgp

 

Thus we obtain 1< nn RR  . 

Hence  nR is a monotone decreasing sequence in R
+. Since the sequence  nR is bounded below, 

there exists 0r  such that .=lim rRn
n 

 

Suppose  that 0>r . Then for positive integer k , we have  

  ).(<))(),(()),(),((max= 11 rrygygpxgxgpRr kkkkk    (2.8) 

Since F  is generalized pg -Meir-Keeler type contraction , we have  
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   ,<)),(),,(()),,(),,((max 1111 rxyFxyFpyxFyxFp kkkkkkkk   (2.9) 

which is equivalent to  

   .<))(),(()),(),((max 2121 rygygpxgxgp kkkk   (2.10) 

Hence we obtain,  .<1 rRk  

It is a contradiction. Hence we have 0=r  . Thus  

   0.=))(),(()),(),((maxlim=lim 11 


nnnn
n

n
n

ygygpxgxgpR  (2.11) 

 Consequently, we have  

 ))(),((lim=0=))(),((lim 11 





nn
n

nn
n

ygygpxgxgp  (2.12) 

By condition (p2) and (2.12), we have    

 0=))(),((lim nn
n

xgxgp


 (2.13) 

and 

 0.=))(),((lim nn
n

ygygp


 (2.14) 

We claim that the sequences  )( nxg  and  )( nxg  are Cauchy in )),(( pXg .  

Take an arbitrary 0> . It follows from (2.12) that there exists Nk  such that ,  

   ).(<))(),(()),(),((max 11  kkkk ygygpxgxgp  (2.15) 

With out loss of generality , assume that ,  )(  and define the following set  

  )(<  , )(>   and )(<))(,()),(,(max/),(= 2

kkkk ygyxgxygypxgxpXyxA    (2.16) 

Take AXgXgB ))(),((= . We claim that  

 BggyxBFF  ))(),((=),(        )),(),,((   (2.17) 

where X,  . Let Bggyx ))( ),((=),(   then by (2.15) and the triangular inequality , we 

have  

 

 .)),(),,(()),,(),,((max)(                                       

)),(),((

)),,(),((
max

))(),((

,))(),((
max                                       

)),(),(())(),((

)),,(),(())(),((
max

)),(),((

,)),(),((
max

1

1

1

1

11

11















FxyFpFyxFp

Fygp

Fxgp

ygygp

xgxgp

Fygpygygp

Fxgpxgxgp

Fygp

Fxgp

kkkk

k

k

kk

kk

kkk

kkk

k

k























































 (2.18) 

We distinguish two cases ,  

Case (a) :      ))(),(()),(),((max=))(,()),(,(max kkkk yggpxggpygypxgxp .  

By Lemma 2.1 , and the definition of A , the inequalities (2.18) turns into  

  ))(),(()),(),((max)(<
)),(),((

)),,(),((
max 




gygpgxgp

Fygp

Fxgp
kk

k

k










 

 

                                      .)(     (2.19) 

Case (b): )(<
))(),((

)),(),((
max=

)),(,(

)),(,(
max<  




 

















k

k

k

k

yggp

xggp

ygyp

xgxp
 

In this case, we have  

   )(<))(),(()),(),((max<  kk yggpxggp  (2.20) 
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Since )(>)(= kxggx   and )()(= kyggy   by (2.1.2) , we get  

    <)),(),,(()),,(),,((max FxyFpFyxFp kkkk  (2.21) 

Now by using (2.18) and (2.21) , we have  

   ).(<)),(),(()),,(),((max  FygpFxgp kk  (2.22) 

On the other hand, using (2.1.1) , it is obvious that  

 ).()(=),(),(   ,  )(>)(=),(>),( 11 kkkkkkkk ygygxyFFxgxgyxFF     

So we have AFF )),(),,((  .  

Since )()( XgXXF  , so BFF )),(),,((  .  

That is (2.17) holds.  

On the other hand by (2.15) , we have Bygxg kk  ))(),(( 11 . 

This implies with (2.17) that,  

 

 









Bygxg

BygxgxyFyxF

BygxgxyFyxFBygxg

nn

kkkkkk

kkkkkkkk

))(),((

))(),((=)),(),,((

))(),((=)),(),,(())(),((

332222

22111111

 (2.23) 

Then, for all kn > , we have Bygxg nn ))(),((  . This implies that for all kmn >, , we have  

.4))((2                                       

))(),((

)),(),((
max

))(),((

)),(),((
max                                      

))(),(())(),((

)),(),(())(),((
max

))(),((

)),(),((
max

 









































mk

mk

kn

kn

mkkn

mkkn

mn

mn

ygygp

xgxgp

ygygp

xgxgp

ygygpygygp

xgxgpxgxgp

ygygp

xgxgp

  

Thus, we have 4))(),(( mn xgxgp , 4))(),(( mn ygygp .  

Thus the sequences  )( nxg  and  )( nyg  are Cauchy in )),(( pXg . Hence by Lemma 1.2, 

 )( nxg  and  )( nyg  are also Cauchy sequences in )),(( pdXg .  

So  

 0.=))(),((lim0=))(),((lim mnp
n

mnp
n

ygygdandxgxgd


 (2.24) 

By using the definition of pd , (2.13) and (2.14), we get  

 0.=))(),((lim0=))(),((lim mn
n

mn
n

ygygpandxgxgp


 (2.25) 

Since )),(( pXg  is complete , again by Lemma 1.2, we have )),(( pdXg  is complete. So there 

exist Xyx ,  such that gxxg n )(  and gyyg n )( .  

Thus, we have  

 ))(),((lim=0=))(),((lim np
n

np
n

ygygdxgxgd


 (2.26) 

By using Lemma 1.2 and (2.25), we get  

 0.=))(),((lim=))(),((lim=))(),((
,

mn
mn

n
n

xgxgpxgxgpxgxgp


 (2.27) 

 0.=))(),((lim=))(),((lim=))(),((
,

mn
mn

n
n

ygygpygygpygygp


 (2.28) 

Since the sequences  )( nxg  and  )( nyg  are monotone increasing and monotone decreasing , 

respectively , by properties (2.1.4) and (2.1.5) , we conclude that  
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 0.          )(>)(   ,    )(<)( neachforygygxgxg nn  

Now by using Lemma 2.1 , we get  

 .))(),(()),(),((max                                          

)),(),,((

)),,(),,((
max

)),(),((

)),,(),((
max

1

1

ygygpxgxgp

xyFxyFp

yxFyxFp

xyFygp

yxFxgp

nn

nn

nn

n

n
























 

Letting n  and by using Lemma 1.3, (2.27) and (2.28), we have  

  0.)),(),(()),,(),((max xyFygpyxFxgp Thus ),(=)( yxFxg  and .),(=)( xyFyg

Thus 2),( Xyx   is a coupled coincidence point of F  and g .  

Corollary 2.1:  Let ),,( pX  be a complete partially ordered partial metric space. Let 

XXXF :  be a given mapping. Suppose that F  satisfies the following conditions:   

(2.1.1.1)  F  has mixed strict monotone property,  

(2.1.1.2)  F  is a weak generalized Meir-Keeler type contraction ,  

(2.1.1.3)  There exist 0x  , Xy 0  such that  ).,(>    ,  ),(< 000000 xyFyyxFx  

   Suppose that X  has the following properties:   

(2.1.1.4)  If  nx  is a sequence such that nn xx >1  for each 1,2,3=n  and xxn  , then     

          xxn <  for each 1,2,3=n  .  

(2.1.1.5)  If  ny  is a sequence such that nn yy <1  for each 1,2,3=n  and yyn  , then  

          yyn <  for each 1,2,3=n  .  

Then F  has a coupled coincidence point, that is there exist Xyx ,  such that xyxF =),( , 

yxyF =),( . 

  

Proof: It follows by taking XIg =  , the identity mapping on X , in Theorem 2.1.  

  

Remark 2.1:  In view of weak generalized pg -Meir-Keeler contraction , Theorem 2.1 is a 

generalization of Theorem 1.1 and Corollary 2.1 is a generalization of Theorem 1.5 of  

Ali Erduran et. al. [3]. 

 

The following example illustrates that Theorem 2.1 is more general than Theorem 1.1 .  

Example 2.1:  Let )[0,= X  be endowed with the partial metric )[0,: XXp  defined 

by   .,            ,max=),( Xyxallforyxyxyxp   

Then it is easy to check ),( pX  is a complete partial metric space .  

Let XXg :  and XXXF :  be defined as  

 .
8

5
=),(         =)(

33
3 yx

yxFandxxg


 

Then, the mapping F  has the strict mixed monotone property. And for 0=x , 1=y , the 

condition (2.1.3) of Theorem 2.1 is satisfied. We claim that condition (2.1.2) holds, but the 

condition (1.3) is not satisfied.  

Suppose, to the contrary, that the condition (1.3) is holds.  

Then for given 0>  there exists 0>)(  such that  
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   ,<)),(),,(()(<))(),(())(),((
2

1
 vuFyxFpvgygpugxgp   (2.29) 

 for all Xvuyx ,,,  with gugx  , gvgy  .  

 

    

.<
8

5
,

8

5
max

8

5

8

5

)(<,max,max
2

1
       .

33333333

33333333











 











vuyxvuyx

vyvyuxuxei

 (2.30) 

 Let 0== ux  and gvgy  , we get  

   ).(<
2

1 333   yvy  (2.31) 

 Now  

   .>2
8

5
>)(

8

5
=)),(),,(( 333  yvyvuFyxFp  

It is a contradiction to (2.29). Hence condition (1.3) does not hold.  

But F  satisfies the condition (2.1.2) . Let gugx   and gvgy  ,  and  

 

 

     )(<,max,,maxmax      Then

.)(<),(),,(max

33333333 







vyvyuxux

gvgypgugxp

 

which gives  

   ).(<,max 333333   yvyuux  (2.32) 

And also, we have  

 

   .  
8

5
  

8

1
=

8

5
  

8

5

8

1

8

5
,

8

5
max

8

5

8

5
=)),(),,((

333333

33
3333

33333333

yvyuux

yu
vyux

vuyxvuyx
vuFyxFp










 

















 







 

Similarly, we get  

    .  
8

1
  

8

5
)),(),,(( 333333 yvyuuxuvFxyFp   

Hence, we have  

 

   

   































  
8

1
  

8

5

,  
8

5
  

8

1

max
)),(),,((

,)),(),,((
max

333333

333333

yvyuux

yvyuux

uvFxyFp

vuFyxFp
 

Without loss of generality, assume that        333333 uuxyvy  .  

Then     .))((
4

3
<  

8

6
)),(),,(()),,(),,((max 333   uuxuvFxyFpvuFyxFp  



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY   

VOL. 9, No. II, December, 2013, pp 80-93. 

90 

 

Thus, by choosing 
3

<)(


  , the condition (2.1.2) is satisfied.  

Thus all the conditions of Theorem 2.1 are satisfied and (0,0) is the coupled coincidence  point of 

F and g .  

 

3  UNIQUENESS OF COUPLED FIXED POINTS 

In this section we will prove the uniqueness of a common coupled fixed point. We endow the 

product space 2X  with the following partial order:  

 .),(),,(      ,,),(),( XXvuyxvyxuyxvu   (3.1) 

 Note that a pair 2),( Xyx   is comparable with 2),( Xvu   if either ),(),( vuyx   or 

),(),( vxvu   . We next state the conditions for the existence and uniqueness of a common 

coupled fixed point of maps F and g.  

Theorem 3.1: In addition to the hypotheses of Theorem 2.1 , assume that for all 
2** ),(),,( Xyxyx   , there exists 2),( Xba   such that )),(),,(( abFbaF  is comparable to both 

)),(),,(( xyFyxF  and )),(),,(( **** xyFyxF . Further , assume that F  and g  commute ,Then 

F  and g  have a unique common coupled fixed point, that is:  

 ).,(=)(=      ),,(=)(= xyFygyyxFxgx  (3.2) 

   

Proof: The set of coupled coincidence points of F and g is not empty due to Theorem 2.1. We 

suppose that 2** ),(),,( Xyxyx   are two coupled coincidence points of F and g. We distinguish 

the following two cases. 

First Case. )),(),,(( xyFyxF  is comparable to )),(),,(( **** xyFyxF  with respect to the 

ordering in 
2X , where  

 ).(=),(   ),(=),(   ),(=),(   ),(=),( ****** ygxyFxgyxFygxyFxgyxF  (3.3) 

Without loss of the generality, we may assume that  

 )(=),(>),(=)(   ),(=),(<),(=)( ****** ygxyFxyFygxgyxFyxFxg  (3.4) 

Now by using Lemma 2.1 , we get 

 

   

 )(),(()),(),((max<                             

)),()),,(()),,()),,((max=))(),(()),(),((max

**

*****

ygygpxgxgp

xyFxyFpyxFyxFpygygpxgxgp 

 (3.5) 

which is a contradiction. Therefore, we have )(=)( *xgxg  and )(=)( *ygyg .  

Second Case. Suppose that )),(),,(( xyFyxF  and )),(),,(( **** xyFyxF  are not comparable.  

By assumption there exists 2),( Xba   such that )),(),,(( abFbaF  is comparable to both 

)),(),,(( xyFyxF  and )),(),,(( **** xyFyxF .  

Setting 0= aa , 0= bb , as in the proof of Theorem 2.1, we define the sequences  )( nag  and 

 )( nbg  as follows:  

 .1,2,,0=      ),(=)(     ),(=)( 11 nabFbgandbaFag nnnnnn   (3.6) 

Since )),(),,(( xyFyxF  = ))(),(( ygxg  and ))(),((=)),(),,(( 11 bgagabFbaF  are comparable, 
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we may assume without loss of generality that )(<)( 1agxg  and )(>)( 1bgyg .  

Inductively,we observe that )(<)( nagxg  and 1,2,,0=      )(>)( nbgyg n   .  

Thus, by Lemma 2.1, we get that  

 

 ))(),(()),(),((max<                                                                  

)),(),,((

)),,()),,((
max=))(),(()),(),((max 11

nn

nn

nn

nn

bgygpagxgp

bbFxyFp

baFyxFp
bgygpagxgp











 (3.7) 

Set  ))(),(()),(),((max= nnn bgygpagxgp  . Hence, for each 0n   

 .<1 nn    (3.8) 

Therefore, the sequence  n  is decreasing and bounded below . Hence, it converges to some 

0s . Assume that 0>s . Then, for some positive integer k, we have  

   ).(<))(),(()),(),((max=   kkk bgygpagxgp  (3.9) 

Since F is a weak generalized pg -Meir-Keeler contraction, we have  

   .<)),(),,(()),,(),,((max kkkk abFxyFpbaFyxFp  (3.10) 

which is equivalent to  

   .<))(),(()),(),((max 11  kk bgygpagxgp  (3.11) 

Hence, we get .<1 k  

which is a contradiction . Thus, we deduce that 0=s , that is:  

   0.=))(),(()),(),((maxlim nn
n

bgygpagxgp


 (3.12) 

In a similar manner, we can show that  

   0.=))(),(()),(),((maxlim
**

nn
n

bgygpagxgp


 (3.13) 

By the triangle inequality, we have  

        










































))(),((

)),(),((
max

))(),((

)),(),((
max

))(),((

)),(),((
max

n

n

n

n

bgxgp

agxgp

bgygp

agxgp

ygygp

xgxgp
 (3.14) 

Letting n  and by using (3.12) and (3.13), we get   0=))(),(()),(),((max ** ygygpxgxgp  . 

Hence we have ).(=)(    ),(=)( ** ygygxgxg               (3.15) 

Next we show that xxg =)(  and yyg =)( .  Let uxg =)(  and vyg =)( . By the commutativity 

of F  and g  and the fact that ),(=)( yxFxg  and ),(=)( xyFyg , we have  

 
),(=))(),((=),((=))((=)(

),(=))(),((=),((=))((=)(

uvFxgygFxyFgyggvg

vuFygxgFyxFgxggug
 (3.16) 

Thus, ),( vu  is a coupled coincidence point of F  and g . However, according to (3.15), we must 

have  ).(=)(    ),(=)( vgygugxg   

Hence, we have ).,(=)(=    ),,(=)(= uvFvgvvuFugu   

That is, the pair ),( vu  is the coupled common fixed point of F  and g .  

Assume that ),( wz  is another coupled common fixed point of F  and g . But, it follows from 

(3.15), we get .=)(=)(=    ,=)(=)(= wwgvgvzzgugu   

Hence ),( vu  is the unique coupled common fixed point of F  and g .  
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Remark 3.1:  Theorem 3.1, is more general than Theorem 1.2 in view of weak generalized pg

-Meir-Keeler contraction. How ever, Thabet Abdeljawad et.al. [1], proved Theorem 1.2 by an 

additional condition, namely, strict g -meir-keeler contraction.  

Corollary 3.1:  In addition to the hypotheses of Corollary 2.1, assume that for all ),( yx  , 
2** ),( Xyx  , there exists 2),( Xba   such that )),(),,(( abFbaF  is comparable to both 

)),(),,(( xyFyxF  and )),(),,(( **** xyFyxF  Then, F has a unique coupled fixed point.  

Remark 3.2:  Corollary 3.1, is a generalization of Theorem 1.6 of Ali Erduran et.al. [3] 
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