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ABSTRACT
In this paper we introduce weak generalized Meir-Keeler contractions and prove some coupled fixed point theorems

for two mappings F: X x X — X and g: X — X on a partially ordered partial metric spaces. Our results

generalize some recent results in the literature, for example the results of Thabet Abdeljawad et.al [1] and Ali Erduran
et.al [3] . Also, we give some illustrative examples .
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1 INTRODUCTION AND PRELIMINARIES

Fixed point theory is an important tool in the study of nonlinear analysis as it is considered to be
the key connection between pure and applied mathematics with wide applications in economics,
physical sciences, such as biology, chemistry, physics, differential equations, and almost all
engineering fields. In the last years, the extension of the theory of fixed point to generalized
structures as cone metric , dislocated metric , partial metric and quasi-metric spaces has received a
lot of attention. One of the most interesting is partial metric space was introduced by Matthews
[14] as a part of the study of denotational semantics of data flow networks. Subsequently, Valero
[23] and Oltra and Valero [16] gave some generalizations of the results of Matthews. Romaguera
[18] proved the Caristi type fixed point theorem on this space.

On the other hand, considering the existence and uniqueness of a fixed point in partially ordered
sets initiated a new trend in fixed point theory. The first result in this direction was given by
Turinici [22], where he extended Banach contraction principle in partially ordered sets. Ran and
Reurings [17] presented some applications of Turinici’s theorem to matrix equations. Worth
mentioning, Gnana Bhaskar and Lakshmikantham [7] introduced the notion of a coupled fixed
point in the class of partially ordered metric spaces and also Lakshmikantham and Ciric [12]
introduced the concept of g -mixed monotone property and proved some coupled fixed theorems
in metric spaces. Later several authors proved the coupled fixed point theorems in metric and
partial metric spaces (see e.g [3, 5, 9, 10, 13, 20]).
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In recent years , many authors generalized Meir-keeler fixed point theorems in various spaces
which include complete metric and partial metric spaces (see e.g [1, 2, 4, 6,19 ]). Very recently Ali
Erduran et. al. [3] proved the results of coupled fixed points for single map by using generalized
Meir-keeler contractions in ordered partial metric spaces and then Thabet Abdeljawad et.al. [1]

extended the results of [3] for two mappings . In this paper we introduce weak generalized ¢, -
Meir-Keeler contractions and prove some coupled fixed point theorems for two mappings
F:XxX —>X and g: X — X on a partially ordered partial metric spaces and generalize the

results of [1] with a suitable example. First we recall some basic definitions and lemmas which
play crucial role in the theory of partial metric spaces.

Definition 1.1 [14,15]: A partial metric on a nonempty set X is a function p: XxX —»R"
such that forall x,y,ze X:
(p1) x=y< p(xx)=p(xy)=p(y.y),
(P2)  p(X,x)< p(x,y), p(Y, Y) < p(x,Y),
(ps)  p(X,y) = p(y, %),
(P)  p(X,¥) < p(x,2)+ p(z,y) - p(z,2).
The pair (X, p) is called a partial metric space (PMS).
If p isa partial metric on X, then the function d_ : X xX —P" given by

d, (% y)=2p(x,y)— p(xX)— p(Y, Y), (11)
isametricon X.
The basic example of partial metric space is
Example 1.1[14,15]: Consider X =[0,00) with p(X,y) =max{x, y}. Then (X, p) is a partial

metric space. Itis clear that p is not a (usual) metric. Note that in this case d (X, y) = |x— y| .
Example 1.2 [21]: Let (X,d) and (X, p) denote a metric and partial metric space , respectively
Then the mapping p: X xX — R" defined by
p(x,y) =d(xy)+ p(x,y)
is a partial metric and (X, p)is a partial metric space.

Lemma 1.1 [2]: Let (X, p) be a complete PMS. Then

1. If p(x,y)=0 then x=1y,

2. If x+y,then p(x,y)>0 ,

3. If x=y, p(x,y) maynothe 0.

Each partial metric p on X generates a T, topology 7z, on X which has as a base the
family of open p-balls {B,(x,&),xe X,&>0}, where B, (x,&)={ye X :p(X,y) < p(X,x)+&}

forall xe X and £>0.
We now state some basic topological notions (such as convergence, completeness,
continuity) on partial metric spaces (see e.g. [2, 11, 14,15]).
Definition 1.2 [14,15]:
1. Asequence {X,} inthe PMS (X, p) converges to the limit x if and only if

P(X, X) = limas P(X, X,) .
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2. Asequence {x,} inthe PMS (X, p) is called a Cauchy sequence if
limnmoe P(X,, X,) €exists and is finite.
3. APMS (X, p) is called complete if every Cauchy sequence {x.} in X
converges with respectto 7, to apoint Xxe X such that p(X,X) = limnm_x P(X,, X;) -
4. A mapping F:X — X issaid to be continuous at x, € X if for every ¢>0, there
exists 0 >0 suchthat F(B,(%,9)) =B, (Fx,,¢).

The following lemma is one of the basic results in PMS([2,11,14,15]).
Lemma 1.2 [14,15]:
1. Asequence {x,} isa Cauchy sequence inthe PMS (X, p) ifandonlyifitisa

Cauchy sequence in the metric space (X,d ).
2. APMS (X, p) is complete if and only if the metric space (X,d ) is complete.
Moreover limd, (X, X,) =0< p(X,X) = lim P(X, X,) = lim P(X,,X;,) (1.2)

N—o0

Next, we give a simple lemma which will be used in the proofs of our main results. For the
proofs we refer to e.g. [2,11].
Lemma 1.3 [2,11]: Assume X, —Z as n—oo inaPMS (X, p) suchthat p(z,z)=0. Then

limn P(X,,Y) = P(z,y) forevery yeX.
The concept of g -mixed monotone property was introduced by Lakshmikantam and Ciric
[12] as follows
Definition 1.3 [12]: Let (X,=<) beapartially orderedsetand F: X xX — X . Thenthemap F
is said to have mixed g - monotone property if F(X,y) ismonotone g -non - decreasingin x
and is monotone g - non - increasing in Y ; thatis, forany x,ye X,
gX, < gx, implies F(x;,y) <F(x,,y) forall ye X and
ay, < gy, implies F(x,y,) <F(x,y,) forall xe X.
Definition 1.4 [12]: Anelement (x,y)e X x X is called
(9,) a coupled coincident point of mappings F: XxX — X and f:X —» X if
X=F(x,y) and fy=F(y,Xx).
(g,) a commoncoupled fixed point of mappings F: XxX — X and f:X — X if
x=f&=F(x,y) and y=fy=F(y,x).
The mappings F and g are said to commute if g(F(x,y))=F(g(x),g(y)) forall x,y,eX
Recently, Gordji et.al. [8] replaced mixed g-monotone property with a mixed strict g
-monotone property and improved the results of [12] .
Definition 1.5 [8]: Let (X,<) be a partially ordered setand F: X x X — X . Then the map
F issaid to have mixed strict g - monotone property if F(x,y) is monotone g -non -
decreasing in x and is monotone ¢ -non - increasing in Yy ;thatis, forany x,ye X,
gx, < gx, implies F(x,,y) <F(x,,y) forall ye X
and
ay, < ay, implies F(x,y,) > F(x,y,) forall xe X.
Very recently, Thabet Abdeljawad et.al. [1] Introduced the following ¢ -meir-keeler type
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and strict g -meir-keeler type contraction as follows :

Definition 1.6 [1]: Let (X, p,<) be a partial metric space. Let F: X xX — X and

g:X — X .Themapping F issaidtobea g-meir-keeler type contraction if forany &>0
there exists a 6(¢) >0 such that

g sg[p(g(x), g(u) + p(g(y), gW)]< s +8(e) = p(F(x, y),F(u,v) <, (13)

forall x,y,u,ve X with g(x)<g() , g(y)=g(v) .
If g=1,, identity map in the Definition 1.6, gives the following definition of [3].
Definition 1.7 [3]: Let (X, p,<) be a partial metric space. Let F: X xX — X beagiven

mapping. we say that F is said to be a generalized Meir-Keeler type contraction if forany >0
there exists a 6(g) >0 such that

< %[p(x,u) 1 p(yV)]< e+5(e) = p(F(x,y), Fuv) <e, (1.4)

forall x,y,u,ve X with x<u , y>v .

Definition 1.8 [1]: Let (X, p,<) be a partial metric space. Let F: X xX — X and

g: X — X .The mapping F issaidto beastrict g- Meir-Keeler type contraction if there
exists 0<k <1 suchthat forany € >0 &(¢)>0 such that

5S§[p<g(x>,g(u»+ P(@(y).9W)]< e +5(e) = p(F(x. ). Fuv) <s, (1.5)

forall x,y,u,ve X with g(x)<g(u) , g(y)=g(v) .

Based on the Definition 1.6 , Thabet Abdeljawad et.al. [1] proved the folowing results.
Theorem 1.1 [1]: Let (X, p,<) be a partially ordered partial metric space. Suppose that X
has the following properties:

() If {x,} isasequence suchthat x> x, foreach n=1,23--- and x, — x, then
X, <X foreach n=1,23--- .
(b) If {yn} is a sequence such that y, , <y, foreach n=123.-- and y, >y, then
y, >yforeach n=123... .
Let F: XxX —> X and g: X — X be mappings such that F(X xX)< g(X) and g(X) is
a complete subspace of (X, p). Suppose that F satisfies the following conditions:

(1) F has mixed strict g- monotone property,

(i) F isa g -Meir-Keeler type contraction ,

(iii) There exist X,, Y, € X suchthat gx, < F(X,,¥,) » 9Yo = F(Y, %)

Then F and g have a coupled coincidence point, that is there exist x,y e X such that
F(xy)=9(9) . F(y,x)=9(y).

Theorem 1.2 [1]:  In addition to the hypotheses of Theorem 1.1 , assume that for all

(X, ¥),(x",y) e X? , there exists (a,b) e X? such that (F(a,b),F(b,a)) is comparable to both

(9(x),g(y)) and (g(x"),g(y")). Further, assumethat F and g commuteand F is a strict

g -Meir-Keeler type contraction. Then F and g have a uniqgue common coupled fixed point,

that is: x=g()=F(xy), y=9(y)=F(.x). (1.6)
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Now, we give the following definitions.

Definition 1.9: Let (X, p,<) be a partial metric space. Let F: XxX > X and g: X —» X.
The mapping F is said to be a weak generalized g, - Meir-Keeler type contraction if for any
& >0 thereexistsa o(¢)>0 such that

mFum»Fww»}<g an

< <
& < max{p(g(x),g(u), P(A(Y), g(V))} < £ +5(s) = maX{p(F(y,X), Fv.u)
forall x,y,u,ve X with g(x)<g(u), g(y)>g(v) .
If we replace g = I, , identity map then, we have
Definition 1.10: Let (X, p,<) be a partial metric space. Let F: X xX — X . The mapping F

is said to be a weak generalized Meir-Keeler type contraction if forany ¢ >0 there exists a
0(g) >0 such that

(1.8)

£ <max{p(x,u), p(y,v)} < & +3(¢) = max{ p(F(y,x), F(v,u))

MFWJXFWN»}<8

forall x,y,u,ve X with x<u, y>v .

2 MAIN RESULTS

First we give the following Lemma which can be derived easily from Definition 1.9 and which is
essential in proving our main result.

Lemma2.1: Let (X, p,<) be a partially ordered partial metric space. Let F:XxX — X and

g: X — X be mappings such that F is a weak generalized g,- Meir-Keeler type contraction.
Then max{p(F(x,Y),F(u,v)), p(F(y,X),F(v,u))} < max{p(g(x), g(u)), p(g(¥). g(v))}
forall x,y,u,ve X with g(x)<g(u), g(y)>g(v).

Now, we give our main result.
Theorem 2.1: Let (X, p,<) be apartially ordered partial metric space. Let F: X xX — X and

g: X — X be mappings such that F(X x X) < g(X) and g(X) isacomplete subspace of
(X, p). Suppose that F satisfies the following conditions:

(2.1.1) F has mixed strict g - monotone property,

(2.1.2) F isaweak generalized g,-Meir-Keeler type contraction,

(2.1.3) Thereexist X, , Y, € X suchthat gx, <F(X,,¥,) . Yy > F (Y %)

Suppose that X has the following properties:
(2.1.4) If {x,} isasequence such that x,,>x, foreach n=1,23--- and x, — X, then x, <X

foreach n=1,2,3.-- .
(2.1.5) If {y,} isasequence suchthat y_, <y, foreach n=1,23--- and y, -y, then
Yo >y
foreach n=1,2,3--- .
Then F and g have a coupled coincidence point, that is there exist x,y e X such that
F(xy)=9() , F(y,x)=g(y) .
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Proof: Let (X,Yy)=(X,,Y,) € X* be such that g(x,) <F(X,,Y,) and g(¥,) > F (Y, %,) . We
construct the sequences {x,} and {y,} in the following way.

Since F(X xX) < g(X) , we are able to choose (x,,Y,) e X? such that g(x,)=F(X,Y,) and
a(y,) = F(Y,,%,) - By repeating the same argument, we can choose (X,,Y,)<€ X? such that

9(x,) =F(x,y;) and g(y,) =F(y1.Xx) -
Inductively, we construct the sequnces {X»} and {yn} such that

g(Xn+1) = F(men) ) g(yn+1) = F(yn’xn) vVn= 1121'“ (21)
By assumption (2.1.3), we have
9(%) <F(Xy, o) = 9(x) and g(y,) > F(Y,. %) =9(Y;) (2.2)
Scince F isamixed g -strict monotone property , we have
9(%) < 9(%) = F (X5 Yo) <F (X, ¥o)- (2.3)
9(Yo) > 9(¥1) = F (X, Yo) < F(X, Y1) (2.4)
Thus
9(%) = F(Xo, Yo) < F(X, Y1) = 9(X,)
Also
g(x) > g(X) = F(Ye, %) > F (Y, %) (2.5)
9(¥1) <9(Yo) = F(¥1, %) < F(¥o, %) (2.6)
Thus

9(y) = F(¥o, %) > F(y1, %) = 9(¥).
Continuing in this way, we get

g(%) <g(x) <g(x,) <---<g(x,) <g(X,,y) <

a(Ye) > 9(y) > 9(Y,) >-->9(Y,) > 9(Yp) >
Now set

R, = max{p(g(x,), 9(%,.1)): P(A(Yn): G (Vo)) (2.7)
From Lemma 2.1 , we have

ax{ p(g(xn)’ g(xn+1))'} — max{ p(F(Xn—l’ yn—l)’ F(Xn ' yn))!}
p(g(yn)!g(yn+l)) p(F(yn—l'Xn—l)'F(yn’Xn))

<max{p(g(%,),9(%,.1)), P(G(¥n) 9 (Y1)}
Thus we obtain R, <R, .
Hence {R,}is a monotone decreasing sequence in R*. Since the sequence {R, }is bounded below,

there exists r >0 suchthat |limR, =r.

n—oo

Suppose that r>0. Then for positive integer k, we have
r <R, =max{p(g(X), 9(%c.2)) PI(Yi) 9(Yicea)) < T +6(r). (2.8)
Since F isgeneralized g,-Meir-Keeler type contraction , we have
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max {P(F (%, Yi): F (Xcas Yieen))s POE (Vi %) F (Ve X)) < T, (2.9)
which is equivalent to
max {P(9(%.1): (X 2))s PIYica) IV < T- (2.10)
Hence we obtain, R <T.
It is a contradiction. Hence we have r =0 . Thus
lim R, = lim max{p(g(x,), 9(,.1)), PO(¥,): 9(¥r.1)} = 0. (211)
Consequently, we have
lim p(9(x,). 9(X,.0)) = 0= lim p(g(¥y). 9(¥r.)) (212)
By condition (p,) and (2.12), we have
lim p(9(x,).9(x,)) =0 (2.13)
and
lim P(9(Y,) 9(y,)) =0. (2.14)

n—o0o

We claim that the sequences {g(x,)} and {g(x,)} are Cauchyin (g(X),p).
Take an arbitrary & > 0. It follows from (2.12) that there exists k € N such that ,

max {p(g (%) 9(%c2)): PI(Y) 9 (Vi) < (o). (2.15)
With out loss of generality , assume that, 6(¢) <& and define the following set

A=1{(xy) e X¥max{p(x, g(x)), PV, g (Y )} < s +5() and x> g(x), y<g(¥%)}  (2.16)
Take B =(g(X),g(X))nA. We claim that

(F(a, B).F(B.a))eB V¥V (xYy)=(9(x).9(B)) B (2.17)
where a, e X . Let (X,¥)=(g(x), g(B)) € B then by (2.15) and the triangular inequality , we
have

< max

p(a(y, ), F(B,a)) P(A(Yi): 9 (Vi) + PG (Vi) F (B, @)
. max{p(g(xk),g(xm))}+ max{ P(9(Xn), F(a,ﬂ))} 2.18)
P(I(Yi), 9(Yei)) P(I(Yi.1) F(B,a))

< &(£) + max{p(F (%, ¥ ). F (@ B)), P(F (¥, X ), F (8. @)}

o { p(a(x,), F(a,ﬂ)),} {p(g(xk),g(xm)) + P(9(X,1)s F(a,ﬁ)),}

We distinguish two cases ,

Case (a) : max{p(x, 9(%)), P(Y, 9(¥))} = max{p(g(a), (%), P(g(B). 9y )< e
By Lemma 2.1, and the definition of A, the inequalities (2.18) turns into

p(9(x), F(a, B)),
max{p(gwk), F(,B,a))} < 5(2) + max{p(g (%), 9(@)), P(9(¥), 9(B))}

<5(e)+e. (2.19)
P(X,9(X)), p(9(x),9(x,)),
C b): = o
ase(b): &< max{p(y,gm»} max{p(g(ﬁ),g(yk»} <&+3le)
In this case, we have
£ <max{p(g(a), 9(x.)), P(I(B), a(Y )} < e +5(e) (2.20)
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Since x=g(a)>9(x,) and y=9(s)<9(y,) by (2.1.2), we get

max {p(F (%, %,), F (& B)), P(F (¥, %), F (B @)} < & (2.21)
Now by using (2.18) and (2.21) , we have
max{p(g (%), F(a, B)), p(a(¥), F (B, @)} < £ +5(s). (2.22)

On the other hand, using (2.1.1) , it is obvious that
Fla,8) > F(X. ¥ = 9(X.1) > 9(X) . F(B,a) <F(Yi. %) = 9(Yiur) < 9(Vi)-
Sowe have (F(a, B),F(f,a))eA.
Since F(XxX)cg(X),so (F(e,p),F(B,a))eB.
That is (2.17) holds.
On the other hand by (2.15) , we have (g(X,.,),9(Y,,)) €B.

This implies with (2.17) that,
(9(Xi1): 9(Vier)) € B= (F (Xt Yirr): F (Vo Xiia)) = (9(%i.2), 9 (Vii2)) € B
= (F (X2 Yieo) F Vo Xii2)) = (9(%13), 9(Yii3)) € B (2.23)
- =(9(x,),9(y,))eB="-
Then, forall n>k, we have (g(x,),9(y,)) € B . This implies that for all n,m >k, we have
{p(g(xn),g(xm)),} {p(g(xn),g(xk))+ p(g(xk),g(xm)),}
max < max
P(9(Ys) 9(Ym)) P(I(Ya) 9(Yi)) + P(I(Yi), 9(Yn))
p max{p(g(xn),g(xk)),}+max{p(g(xk),g(xm)),}
P(9(¥n),9(y)) P(9(y), 9(¥n))
<2(e+0(e)) Lde.
Thus, we have p(g(x,),9(X,))<4e, p(9(V,),9(y,)) <4e.
Thus the sequences {g(x,)} and {g(y,)} are Cauchy in (g(X),p). Hence by Lemma 1.2,
{9(x,)} and {g(y,)} arealso Cauchy sequencesin (g(X),d,).

So
mdp(g(xn), 9(x,)) =0and mdp(g(yﬂ). 9(ym)) =0. (2.24)
By using the definition of d , (2.13) and (2.14), we get
lim p(9(x,). 9(x,)) =0 and lim p(g(yy). 9(¥n)) =0. (2.25)

Since (g(X), p) is complete , again by Lemma 1.2, we have (g(X),d,) is complete. So there

exist x,y e X suchthat g(x,) —>gx and g(y,)—ay.
Thus, we have

mdp(g(X), g(x,))=0= mdp(g(y), a(y,)) (2.26)

By using Lemma 1.2 and (2.25), we get
P(9(x),g(x)) = lim P(9(x),9(x,)) = im pP(9(x,), 9(x,)) =0. (2.27)
p(a(y).a(y)) = lim p(a(y), 9(y,)) = nJl,’le P(9(Y,) 9(Y,)) =0. (2.28)

Since the sequences {g(xn)} and {g(yn)} are monotone increasing and monotone decreasing ,
respectively , by properties (2.1.4) and (2.1.5) , we conclude that
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9(x,)<g(¥) . 9(y,)>g(y) foreach n>0.
Now by using Lemma 2.1 , we get
ax{ P(9 (%0, F (%, y)),} e { P(F (X, ¥n). F (X, y))}
P(9(Ynia): F (Y, X)) P(F(Yn: %), F (Y, X))
< max{p(g(%,), 909), P(9(¥,), (Y}
Letting n— oo and by using Lemma 1.3, (2.27) and (2.28), we have
max {p(g(x), F(x, )., P(@(y), F (. x))}<0.Thus g(x)=F(x,y) and g(y) = F(y,x).
Thus (x,y) e X? is a coupled coincidence pointof F and g.
Corollary 2.1: Let (X, p,<) be a complete partially ordered partial metric space. Let
F: XxX — X be agiven mapping. Suppose that F satisfies the following conditions:
(2.1.1.1) F has mixed strict monotone property,
(2.1.1.2) F isaweak generalized Meir-Keeler type contraction ,
(2.1.1.3) Thereexist x, , Y, € X suchthat x, <F(X,,Y,) » Yo > F(Yy: %)
Suppose that X has the following properties:
(2.1.1.4) If {x,} isasequencesuchthat x ,>x foreach n=12,3.-- and x, — X, then
X, <x foreach n=1,23:-- .
(2.1.1.5) If {y,} isasequencesuchthat y,, <y, foreach n=1,2,3--- and y, -y, then
y, <y foreach n=1,23.-- .
Then F has a coupled coincidence point, that is there exist x,y e X suchthat F(x,y) =X,
F(y,x)=y

Proof: It follows by taking g =1, , the identity mapping on X, in Theorem 2.1.

Remark 2.1: Inview of weak generalized g,-Meir-Keeler contraction, Theorem 2.1 is a

generalization of Theorem 1.1 and Corollary 2.1 is a generalization of Theorem 1.5 of
Ali Erduran et. al. [3].

The following example illustrates that Theorem 2.1 is more general than Theorem 1.1 .
Example 2.1: Let X =[0,00) be endowed with the partial metric p: X x X —[0,00) defined

by p(x,y)=[x—y|+max{x,y} forall x,yeX.
Then it is easy to check (X, p) is a complete partial metric space .
Let g: X —> X and F:XxX — X be defined as

x* +5y°

g(x)=x> and F(x,y)= .

Then, the mapping F has the strict mixed monotone property. And for x=0, y=1, the
condition (2.1.3) of Theorem 2.1 is satisfied. We claim that condition (2.1.2) holds, but the
condition (1.3) is not satisfied.

Suppose, to the contrary, that the condition (1.3) is holds.

Then for given &> 0 there exists (&) >0 such that
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< %[p(g(x), gU))+ p(g(y), g(v)]< 3(e) = p(F(x,y),Fu,v) <¢, (2.29)
forall x,y,u,ve X with gx<gu, gy=>gv.

ie €< %ﬂxg’ —u?"+max{x3,u3}+‘y3 —v3‘+max{y3,v3}]< e+5(¢)

x* +5y° u3+5v3| x*+5y° u®+5v° (2.30)
= - + max : <e.
8 8 | 8 8
Let x=u=0 and gy > gv, we get
gﬁ%ﬂy3—v3‘+y3]< e+0(¢). (2.31)
Now
5 3 3 3 5
p(F(x,y),F(u,v)) = gﬂ(y -V )‘+ y ]> §><25 > e,
It is a contradiction to (2.29). Hence condition (1.3) does not hold.
But F satisfies the condition (2.1.2) . Let gx<gu and gy >gv, and
& < max {p(gx, gu), p(gy, gv)} < & +5(z).
Then e< max{x3 —us‘ + max{x3,u3},‘y3 —vs‘ + max{y3,v3}}< g+0(s)
which gives
ggmax{xs—u3‘+u3,‘y3—v3‘+y3}< g+0(¢). (2.32)

And also, we have

p(F(x,y),F(u,v)) =

x® +5y° u3+5v3| x*+5y° u®+5v°
s g |+max ,

8 8
<F‘x3—u3‘+§‘y3—v3‘ }+ u"+5y”
|8 8 8

= %st —u3‘+u3 ]+§Uy3—v3‘+ % ]

Similarly, we get
p(F(y,x),F(v,u)) < gUXB —u3‘ T ]+éuy3 _Vs‘ Ly ]

Hence, we have

ax{p(F(x,y),F(u,v)),}SmaX ﬂ \+U] ﬂy \+y
PEOFD ot el |

Without loss of generality, assume that h ‘+y J u u3‘+u3 J
Then max{p(F(x,y),F(u,v)),p(F(y,x),F(v,u))}ggﬂx —u ‘-{-Us ]<%(5+5(5)).
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Thus, by choosing 6(g) < % , the condition (2.1.2) is satisfied.

Thus all the conditions of Theorem 2.1 are satisfied and (0,0) is the coupled coincidence point of
Fand g.

3 UNIQUENESS OF COUPLED FIXED POINTS
In this section we will prove the uniqueness of a common coupled fixed point. We endow the

product space X * with the following partial order:

UV SXY)usxy<y, VYV (XY),Uv)e XxX. (3.2)
Note that a pair (x,y)e X?® is comparable with (u,v)e X? if either (x,y)<(u,v) or
(u,v) <(x,v) . We next state the conditions for the existence and uniqueness of a common

coupled fixed point of maps F and g.
Theorem 3.1: In addition to the hypotheses of Theorem 2.1 , assume that for all

(X, ¥),(x",y) e X? , there exists (a,b) e X? such that (F(a,b),F(b,a)) is comparable to both
(F(x,y),F(y,x) and (F(x,y"),F(y",Xx")).Further , assume that F and g commute ,Then
F and g have a unique common coupled fixed point, that is:

x=g(X)=F(XYy), y=9(y)=F(,Xx). (3.2)

Proof: The set of coupled coincidence points of F and g is not empty due to Theorem 2.1. We
suppose that (x,y),(x",y") e X? are two coupled coincidence points of F and g. We distinguish
the following two cases.
First Case. (F(x,Y),F(y,x)) is comparable to (F(x,y’),F(y’,x")) with respect to the
ordering in X ?, where

FOxy)=9(x), F(y,)=g(y), F(X,y)=g(xX), F(y,x)=g(y). (3:3)
Without loss of the generality, we may assume that
g() =F(xy)<F(,y)=9(x), g(y)=F(y,x)>F(y,x)=9(y) (3.4)

Now by using Lemma 2.1 , we get

max{p(g(x),9(x)), p(g(y), 9(y")} = maX{p(F(X, ). FOC,y)), p(F (Y, X)), F(y*,x**))}
(3.5)
< max{p(g(x), 9(x"). p(a(y). a(y")}

which is a contradiction. Therefore, we have g(x)=g(x") and g(y)=g(y).
Second Case. Suppose that (F(x,y), F(y,x)) and (F(x,y"),F(y’,x")) are not comparable.
By assumption there exists (a,b)e X? such that (F(a,b),F(b,a)) is comparable to both
(F(xy),F(y,x) and (F(x',y’),F(y,x)).
Setting a=a,, b=Db,, as in the proof of Theorem 2.1, we define the sequences {g(an)} and
{g(b,)} as follows:

9(a,.) = F(a,b) and g(b.)=F(b,.a) ¥ n=012- (3.6)
Since (F(x,¥),F(y,x)) = (9(x),9(y)) and (F(a,b),F(b,a))=(g(a,).9(b)) are comparable,
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we may assume without loss of generality that g(x) <g(a,) and g(y)>g(b,).
Inductively,we observe that g(x) <g(a,) and g(y)>g(,) Vv n=012,--- .
Thus, by Lemma 2.1, we get that
P(F(x, ). F(a,.b,)),
max{p(9(x).9(@,.1)). P(9(y): 9(b,..))} = max{p(F (V0. F(b..b.) }
(3.7)
< max{p(g(x),9(,)), P(g (), 9(b,))}
Set A, =max{p(g(x),9(a,)), p(a(y), g(b,))} . Hence, for each n>0
A, <A, (3.8)
Therefore, the sequence {An} is decreasing and bounded below . Hence, it converges to some
s>0. Assume that s> 0. Then, for some positive integer k, we have

g <A, =max{p(g(x),9(a,), P(g(¥), g (b))} < & +5(s). (3.9)
Since F is a weak generalized g, -Meir-Keeler contraction, we have
max {p(F(x,y), F (a,,b,), P(F (v, X), F(b,, &)} < &. (3.10)

which is equivalent to

max{p(g(x), 9(a..)), P(a(y), g(b,,.))} < &. (3.12)
Hence, we get A, <e.

which is a contradiction . Thus, we deduce that s=0, that is:

lim max{p(g(x). 9(a,)), P(g(y), 9(0,)} = 0. (312)
In a similar manner, we can show that
lim max {p(g(x). 9(a,)). Pg(y"). g0, )}=0. (3.13)
By the triangle inequality, we have
o {p(g(x*), g(x»,} < e { P(9(x). g(an)),} + e { P(9(x), g(an))} (3.14)
p(a(y’). a(y)) p(a(y).9(b,)) p(g(x"),g(b,))

Letting n— oo and by using (3.12) and (3.13), we get max{p(g(x*), g(x)), p(a(y’), g(y))}: 0.

Hence we have g(x’) =g(x), g(y’)=g(y). (3.15)

Next we show that g(x)=x and g(y)=y. Let g(x)=u and g(y)=v.Bythe commutativity

of F and g and the fact that g(x) = F(x,y) and g(y)=F(y,x), we have
g(u) =9(9(x)) = g(F(x,y) = F(9(x),9(y)) = F(u,v)
9(v) = 9(a9(y)) = 9(F(y,x) = F(g(y), g(x)) = F(v,u)

Thus, (u,v) isacoupled coincidence pointof F and g.However, according to (3.15), we must

have g(x)=g(u), 9(y)=9gV).

Hence, we have u=g(u) =F(u,v), v=g(v)=F(v,u).

That is, the pair (u,v) is the coupled common fixed pointof F and g.

Assume that (z,w) is another coupled common fixed point of F and g. But, it follows from

(3.15),weget u=gu)=g(2)=2z, v=9g(v)=g(w)=w.

Hence (u,v) is the unique coupled common fixed pointof F and g.

(3.16)
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Remark 3.1: Theorem 3.1, is more general than Theorem 1.2 in view of weak generalized g,

-Meir-Keeler contraction. How ever, Thabet Abdeljawad et.al. [1], proved Theorem 1.2 by an
additional condition, namely, strict g -meir-keeler contraction.

Corollary 3.1: In addition to the hypotheses of Corollary 2.1, assume that for all (x,y) ,
(x',y") e X?, there exists (a,b) e X* such that (F(a,b), F(b,a)) is comparable to both
(F(x,¥),F(y,x)) and (F(x',y),F(y’,x)) Then, F has a unique coupled fixed point.
Remark 3.2: Corollary 3.1, is a generalization of Theorem 1.6 of Ali Erduran et.al. [3]
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