ON THE INVERSE LAPLACE TRANSFORM

¹A. Hernández-Galeana, ²J. López-Bonilla*, ¹J. Rivera-Rebolledo, ³B. Man Tuladhar

¹ Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional (IPN), Departamento de Física, Edif. 9, Col. Lindavista, CP 07738, México DF, ² ESIME–Zacatenco-IPN, Anexo Edif. 5, Col. Lindavista, CP 07738 México DF,

³ Kathmandu University, Dhulikhel, Kavre, Nepal

*Corresponding author: ilopezb@ipn.mx Received 13 June, 2012; Revised 24 December, 2012

ABSTRACT

In this work we show that the Tuan-Duc formula used to invert the Laplace transform is equivalent to the expression given by Post-Widder.

Keywords: Laplace transform; Bromwich formula; Post-Widder and Tuan-Duc equations

INTRODUCTION

The Laplace transform of f(x) is defined as [1]:

$$L[f(x)] = F(s) = \int_{0}^{\infty} e^{-sx} f(x) dx,$$
(1)

and the inverse problem is to determine f(t) for a given F(s). Bromwich [2, 3] gave the expression:

and the inverse problem is to determine
$$f(t)$$
 for a given $F(s)$. Bromwich [2, 3] gave the expression $f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} e^{st} f(s) ds,$

where the integration is performed in the complex plane along the straight line $x = \sigma$.

where the integration is performed in the complex plane along the straight line $x = \sigma$. But due to the interest to get the inverse Laplace transform without complex variable, Post [4] and Widder [5, 7] found the following formula in a real variable:

$$f(t) = \lim_{n \to \infty} \frac{(-1)^n}{n!} \left(\frac{n}{t}\right)^{n+1} \left[\frac{d^n F}{ds^n}\right]_{s=\frac{n}{t}}$$
(3)

In Sec. 2 it is given an alternative form for (3) to obtain a procedure for the recent expression of Tuan-Duc [6]:

$$f(t) = \lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{t}{k} \frac{d}{dt} \right) \left[\frac{n}{t} F\left(\frac{n}{t}\right) \right]$$
(4)

and there it will be clear that (4) is another manner to write (3).

THE POST-WIDDER AND TUAN-DUC FORMULAE

First, we know that [1]:

$$L[x^n] = \int_0^\infty e^{-sx} x^n dx = \frac{n!}{s^{n+1}},$$
(5)

where in $s = \frac{n}{t}$ imlplies:

$$\frac{n^{n+1}}{n!t^{n+1}} \int_{0}^{\infty} e^{-\frac{n}{t}x} x^{n} dx = 1$$
 (6)

On the other hand, the binomial theorem of Newton gives:

$$(x-t)^{r} = \sum_{k=0}^{r} {r \choose k} x^{k} (-t)^{r-k},$$
(7)

such that for $r \ge 1$:

$$\frac{n^{n+1}}{n! \ t^{n+1}} \int_{0}^{\infty} e^{-\frac{n}{t}x} \ x^{n} \ (x-t)^{r} dx \tag{8}$$

$$=\frac{n^{n+1}}{n!\ t^{n+1}}\int_{0}^{\infty}e^{-\frac{n}{t}x}\ x^{n}\ \sum_{k=0}^{r}\binom{r}{k}x^{k}(-t)^{r-k}\ dx,$$

where we employ the gamma function

$$\Gamma(n+k+1) = \int_{0}^{\infty} e^{u} u^{n+k} du = (n+k)!,$$

and our integral adopts the form:

$$t^{r} \sum_{k=0}^{r} {r \choose k} (-1)^{r-k} \frac{(n+1)(n+2)...(n+k)}{n^{k}}$$

$$\underset{n\to\infty}{\longrightarrow} t^r \sum_{k=0}^r \binom{r}{k} (1)^k \left(-1\right)^{r-k} = t^r \left(1-1\right)^r = 0$$

The expansion of f(x) in Taylor series around x = t:

$$f(x) = f(t) + \sum_{r=0}^{\infty} \frac{f^{(r)}(t)}{r!} (x-t)^r$$
(9)

together with (6) and (8), leads to the relation:

$$f(t) = \lim_{n \to \infty} \frac{n^{n+1}}{n! \ t^{n+1}} \quad \int_{0}^{\infty} e^{-\frac{n}{t}x} \ x^{n} \ f(x) \ dx \tag{10}$$

Further, from (1) it is immediate that:

$$\left(t^2\frac{d}{dt}\right)F\left(\frac{n}{t}\right)=n\int_{0}^{\infty}e^{-\frac{n}{t}x}x^n f(x) dx,$$

and after successive applications of the operator $\left(t^2 \frac{d}{dt}\right)$ we get the identity:

$$\frac{1}{(n-1)! \ t^{n+1}} \left(t^2 \frac{d}{dt} \right)^n F\left(\frac{n}{t}\right) = \frac{n^{n+1}}{n! \ t^{n+1}} \int_0^\infty e^{-\frac{n}{t}x} x^n \ f(x) \ dx, \tag{11}$$

which by substitution into (10) gives the inversion formula:

$$f(t) = \lim_{n \to \infty} \frac{1}{(n-1)! \ t^{n+1}} \left(t^2 \frac{d}{dt} \right)^n F\left(\frac{n}{t}\right) , \tag{12}$$

allowing the construction of f(t) from F(s).

It is simple to prove that (12) leads to the expression (3) deduced by Post [4]-Widder [5, 7];

in fact, with $s = \frac{n}{t}$:

$$t^{2} \frac{d}{dt} F\left(\frac{n}{t}\right) = t^{2} \frac{d}{d} \frac{s}{t} \left[\frac{dF}{ds}\right]_{s = \frac{n}{t}} = -n \left[\frac{dF}{ds}\right]_{s = \frac{n}{t}},$$

SO

$$\left(t^2 \frac{d}{dt}\right)^n F\left(\frac{n}{t}\right) = (-1)^n n^n \left[\frac{d^n F}{ds^n}\right]_{s=\frac{n}{t}},\tag{13}$$

which in (12) implies (3). That is, the Post-Widder relation is the simplified form of (12).

From (1), it can be shown that:

$$\left(1+t\,\frac{d}{d\,t}\right)\left[\frac{n}{t}\,F\left(\frac{n}{t}\right)\right]=\frac{n^2}{t^2}\int\limits_0^\infty\,e^{-\frac{n}{t}x}\,x\,f\left(x\right)dx,$$

then

$$\left(1 + \frac{t}{2}\frac{d}{dt}\right)\left(1 + t\frac{d}{dt}\right)\left[\frac{n}{t}F\left(\frac{n}{t}\right)\right] = \frac{n^3}{2t^3}\int_{0}^{\infty}e^{-\frac{n}{t}x}x^2 f(x) dx, \text{ etc.}$$

and the identity:

$$\prod_{k=1}^{n} \left(1 + \frac{t}{k} \frac{d}{dt} \right) \left[\frac{n}{t} F\left(\frac{n}{t}\right) \right] = \frac{n^{n+1}}{n! \ t^{n+1}} \int_{0}^{\infty} e^{-\frac{n}{t}x} x^{n} \ f(x) \ dx, \tag{14}$$

is generated, which in (10) gives the Tuan-Duc formula [6] as shown in (4).

Therefore, (3), (4) and (12) are equivalent among them because:

$$\frac{(-1)^n}{n!} \left(\frac{n}{t}\right)^{n+1} \left\lfloor \frac{d^n F}{d s^n} \right\rfloor_{s=\frac{n}{t}} = \prod_{k=1}^n \left(1 + \frac{t}{k} \frac{d}{dt}\right) \left\lfloor \frac{n}{t} F\left(\frac{n}{t}\right) \right\rfloor \tag{15}$$

$$= \frac{1}{(n-1)!t^{n+1}} \left(t^2 \frac{d}{dt} \right)^n F\left(\frac{n}{t}\right)$$

ACKNOWLEDGEMENTS

We are grateful to Profs. Vu Kim Tuan & Dinh Thanh Duc who have kindly sent us a copy of their publication.

REFERENCES

- [1] Schiff J L, *The Laplace transform: Theory and applications*, Springer–Verlag, New York (1999).
- [2] l'Anson Bromwich T J, Normal coordinates in dynamical systems, *Proc. Lond. Math. Soc. Ser.* II, **15**(1916) 401.
- [3] Duffy D G, Green's functions with applications, Chapman & Hall / CRC Press, London (2001) 409.
- [4] Post E, Generalized differentiation, Trans. Amer. Math. Soc. **32**(1930) 723.
- [5] Widder D V, The *inversion of the Laplace integral and the related moment problem*, Trans. Amer. Math. Soc. **36**(1934) 107.
- [6] Kim Tuan V and Thanh Duc D, A new real inversion formula of the Laplace transform and its convergence rate, *Frac. Cal. & Appl. Anal.* No.4 (2002) 387.
- [7] Widder D V, *The Laplace Transforms*, Princeton Univ. Press, Princeton (1946).