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ABSTRACT

In this work we show that the Tuan-Duc formula used to invert the Laplace transform is equivalent to the expression given by
Post-Widder.
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INTRODUCTION
The Laplace transform of f(x) is defined as [1]:

0

sx 1
L[f(x)]zF(s)zjesf(x)dx, ®
0
and the inverse problem is to determine f(t) for a given F(s). Bromwich [2, 3] gave the expression:

1 o+ioo

Ft)=_1 j e £ (s) ds, @
2711

where the integration is performed in the complex plane along the straight line X = .

But due to the interest to get the inverse Laplace transform without complex variable,

Post [4] and Widder [5, 7] found the following formula in a real variable:

_1\n n+1 n (3)
F()=limCDo () | dF
e bt ds” "

In Sec. 2 it is given an alternative form for (3) to obtain a procedure for the recent expression of
Tuan-Duc [6]:

f(t) = lim (1+tdj{”|:(”ﬂ @
e L I ) 6 Lt

and there it will be clear that (4) is another manner to write (3).

o—iowo

THE POST-WIDDER AND TUAN-DUC FORMULAE
First, we know that [1]:
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. n. :
where in s = " imlplies:

o J-e_tXX”dx =1 ©)
it )

On the other hand, the binomial theorem of Newton gives:

(X—t)" = Z(Ux (=), ")

n+1

k=0
such that for r > 1:
nn+1 —Dx
——— et X" (x-t)'dx
ntt (8)
0
n"t ( - - r B
:wmjet Xy X o
nt ’ —

where we employ the gamma function
r(n+k+1) = Ie“u“*kdu =(n+Kk)},
0

and our integral adopts the form:

r ok 1 2)... k
tr;(;j(_l) (n+)(n+k) (n+k)

n

r

St GJ @* (1) =t" 1-1)" =0

n— o
k=0

The expansion of f (x) in Taylor series around x = t:

~ £ (1) : 9)
f(x)_f(t)+zo ()
together with (6) and (8), leads to the relation:
n+1 P n
f(t) = lim J'et X" f (x) dx (10
N—s00 n ! .tn+l

0
Further, from (1) it is immediate that:

[tz o:jt] F (?j: nj e X f (x) dx,

0
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and after successive applications of the operator (tz ;tj we get the identity:

n n+1 P n
L fed F(”j: " 1jetx”f(x)dx, )
(n-rt dt t) ntte)
which by substitution into (10) gives the inversion formula:
f(t)=Ilim 1 | 2 d F(nj ’ (12)
e (n=1)1 " dt t

allowing the construction of f(t) from F(s).
It is simple to prove that (12) leads to the expression (3) deduced by Post [4]-Widder [5, 7];

in fact, with s = ? :

car(t)-e 5],
dt  \t dtlds ] n ds |,_n

SO

dt t ds" | »

which in (12) implies (3). That is, the Post-Widder relation is the simplified form of (12).

From (1), it can be shown that:

d)[n(n\]_n [
(1+tdtJ L F(tﬂ = ¢ -!:e x f(x)dx,

then

[T o S s

and the identity:

n n+1 y —Ex (14)
(Lo e
k dt t ntt™ )

k=1
is generated, which in (10) gives the Tuan-Duc formula [6] as shown in (4).
Therefore, (3), (4) and (12) are equivalent among them because:

SO TESEC

" k=1

_ 1 (tz dJn F (nj
(=D dt t
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