
KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY   

VOL. 9, No. I, July, 2013, pp 145-151 

145 

 

APPROXIMATION OF A FUNCTION f OF Lip ( (t), p) CLASS BY  

(C,1) (N, pn) METHOD OF ITS FOURIER SERIES 

 
Binod Prasad Dhakal 

Central Department of Education Mathematics, Tribhuvan University, Nepal 

 

*Corresponding address: binod_dhakal2004@yahoo.com 

Received 13 January, 2013; Revised 10 March, 2013 

 

ABSTRACT 
In this paper, the degree of approximation of a function belonging to Lip ((t),p) class by product summability 

method (C,1) (N, pn) of its Fourier series has been determined.  

 

Keywords: Degree of approximation, Fourier series, Lip ((t), p) class, (C,1)(N, pn) summability 

means.  

 

AMS Classification. 41A35, 40G05. 

 

INTRODUCTION 

Bernstein [2], Alexits [1], Sahney and Goel [8] and Chandra [3] have determined the degree of 

approximation of a function belonging to Lip class by (C, 1), (C, ), (N, pn) and )p,N( n

~

means of 

its Fourier series. Working in same direction, Sahney & Rao [9] and Khan [4] have studied the 

degree of approximation of functions belonging to Lip (, p) by (N, pn) and (N, p, q) means 

respectively. Working in same direction Qureshi [7] and Qureshi and Nema ([5],[6]) have 

studied the degree of approximation of a function of class Lip , Lip (,p) and Lip ( (t), p) by 

(N,pn) summability means. But till now nothing seems to have been done to obtain the degree of 

approximation of function belonging to Lip((t),p) by product summability method (C,1)(N,pn). 

(C,1) (C,),  > 0 is particular case of (C,1) (N,pn) summability method. An attempt to make an 

advance study in this direction, in present paper, the degree of approximation of a function f 

belonging to  Lip ( (t), p) by (C,1) (N,pn) means of its Fourier series has been determined.  

 

DEFINITIONS AND NOTATIONS 

 Let f be 2 periodic function, Lebesgue integrable and a function of Lip((t),p), Fourier 

series of f(x) is given by 

 






1n
oa

2

1
)x(f (an cosnx + bn sinnx)     (1) 

We define the norm 
p
by  

 1p,dx)x(ff
p
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p
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0
p















 



. 

The degree of approximation En(f) of function f: RR is given by,     (Zygmund [11] ) 
 

pnn ftMin)f(E   

where tn is trigonometrical polynomial of degree n.  
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A function f(x) Lip  if 

 









tO)x(f)tx(f  for 0 <  ≤1. 

f(x)  Lip (, p) if  
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

 0 <   ≤ 1,  p  1. 

Given a positive increasing function (t),  p  1,  

f (x)  Lip ((t), p)  if  

))t((Odx)x(f)tx(f
p
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If  t)t( ,  p),t(Lip  coincides with the class )p,(Lip   and If  p  in the )p,(Lip  class,  

then )p,(Lip   reduces to Lip  class.  

 Let n
0n

u




be infinite series whose n
th

 partial sum 


 uS
n

0
n . 

Cesåro mean (C,1) of sequence {Sn} is defined by 

 k

n

0k
n S

1n

1



 . 

If Sn  ,  as n then the sequence {Sn} or infinite series 


0n
nu  is said to be summable by 

Cesåro mean (C,1) to S. It is denoted by  

  )1,C( Sn  ,  as n. 

Let {pn} be sequence of positive real constant such that 



n

0i
in pP and 0pP 11   .  Nörlund mean 

(N,pn) of sequence {Sn) is  

 kkn

n

0kn

p
n Sp

P

1
t 



 . 

Here , If St
p
n  ,    as n  then the sequence {Sn} or infinite series n

0n

u




 is said to be summable 

by Nörlund mean (N,pn) to S. It is denoted by  

  )p,N(St n
p
n  ,  as n. 

If the method of summability (C,1) is superimposed on Nörlund mean (N,pn), another method of 

summability (C,1) (N,pn) is obtained.  

We write 
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Here (C,1) (N,pn) means of sequence {Sn} define sequence  n1 p,c
nt . 

 If St n1 p,c
n  ,  as n  then sequence {Sn} or infinite series 



0n
nu is said to be summable 

by (C,1) (N,pn) method to S. It is denoted by 

  )p,N()1,C(St n
p,c

n
n1  ,   as n. 
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We shall use following notations  

 )x(f2)tx(f)tx(f)t(        (2) 
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 MAIN THEOREM 

A quite good amount of works are known for approximation of a function f belonging to  p),t(Lip   

class by (C,1), (C,)  >0 and (N, pn) summability method. Object of this paper is to study the 

approximation of f belonging to  p),t(Lip  class by product summability method of the form 

(C,1) (N, pn). In fact, in this paper, we prove the following theorem;    

Theorem. If f: R  R is 2 periodic and Lebesgue integrable, belonging to  p),t(Lip   class, then 

the degree of approximation of f by (C,1)(N,pn)  summability means 
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where  is an arbitrary number such that q(1-)-1> 0, condition (4) and (5) hold uniformly in x. 

 

LEMMAS 

We need the following Lemmas for the proof of the theorem.  

Lemma I: If )t(N n1 p,c

n is given by (3) then, 
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Lemma II: If )t(N n1 p,c
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PROOF OF THE THEOREM 

Following Titchmarsh [10], n
th

 partial sum Sn(x) of Fourier series (1) is given by  
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The (N,pn) transform 
p

nt of {Sn(x)} is given by  
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The (C,1) (N,pn) transform n1 p,c
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Let us consider I1. 
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 Applying Holder’s inequality and fact that )t(   p),t(Lip  , we have  
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Let us consider I2. 

Applying Holder’s inequality, and taking  as an arbitrary number such that q (1-) -1 > 0, we 

have  

 
p

1

p

2 dt
)t(

)t(t
I

1n

1 








































   
q

1

q
p,c

n dt
t

)t(N)t( n1

1n

1 



























 









 

   
q

1

q

1
dt

t

)t(
)1n(O

1n

1 



























 











, by condition (5) and lemma II 

   
q

1

2

q

1

y
1

1n

y

dy

y
)1n(O

1






























































 

   
q

1

2qq

1n

y

dy

1n

1
O)1n(O

1 














































 



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY   

VOL. 9, No. I, July, 2013, pp 145-151 

150 

 

  
  q

1

1n
11q

1
1)1(q

y

1n

1
)1n(O




























































 

  
  









































q

111n

1
O

1n

1
)1n(O  

  



























1n

1
)1n(O q

11
 

  

























1n

1
)1n(O p

1

.      (10) 

Collecting (8), (9) and (10) we have,  
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.  

 This completes the proof of the theorem.  

 

COROLLARY 

Following Corollaries can be derived from the theorem:  

Corollary I: If  t)t( then the degree of approximation of a function f belonging to the class Lip 

(, p), 1
p
1  , is given by  
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Proof: Since 
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which complete the proof of corollary I.  

Corollary II: If p in Corollary I, the degree of approximation of a function f belonging to the 

class Lip , 10  , is given by  
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