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ABSTRACT:

In this paper we obtain a unique common fixed point theorem for six expansive mappings in G —metric spaces.
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1. INTRODUCTION
Dhage [2, 3, 4, 5]. et al. introduced the concept of D —metric spaces as generalization of

ordinary metric functions and went on to present several fixed point results for single and
multivalued mappings. Mustafa and Sims [6] and Naidu et al. [10, 11, 12] demonstrated that
most of the claims concerning the fundamental topological structure of D — metric space are
incorrect, alternatively, Mustafa and Sims introduced in [6] more appropriate notion of
generalized metric space which called G — metric spaces, and obtained some topological
properties. Later Zead Mustafa, Hamed Obiedat and Fadi Awawdeh[7], Mustafa, Shatanawi and
Bataineh [8], Mustafa and Sims [9] Shatanawi [13] and Renu Chugh, Tamanna Kadian, Anju
Rani and B.E. Rhoades [1] et al. obtained some fixed point theorems for a single map in
G- metric spaces. In this paper, we obtain a unique common fixed point theorem for six weakly
compatible expansive mappings in G — metric spaces . First, we present some known definitions
and propositions in G — metric spaces .

DEFINITION 1.1 [6] : Let X be a nonempty set and let G: X x X x X — R" be a function
satisfying the following properties :

G):G(x,y,z)=01ifx=y=2z,
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(G2):0<G (X, x,y) forall X,y e Xwith x =,

(G3): G (XX Yy)<G((X Yy, z)forallx,y,z € Xwithy = z,
(Gy):G(X,¥,2)=GC(X,2,y)= G (y,2,X)= ..., symmetry in all three variables,
Gs):G(X,Yy,2)<G(X,a,2a)+G(a,y,z)forallx,y,z,a € X.

Then the function G is called a generalized metric or a G — metric on X and the pair (X, G) is
called a G- metric space.

DEFINITION 1.2 [6] : Let (X, G) be a G- metric space and {x »} be a sequence in X. A point

X € X is said to be limit of {x o} iff lim G(x,X,, X, )=0. Inthis case , the sequence {x} is

said to be G — convergent to x.
DEFINITION 1.3 [6] : Let (X, G) be a G- metric space and {x } be a sequence in X. {x} is
called G- Cauchy iff lim G(x,,x,,X,,)=0. (X, G) is called G —complete if every G—Cauchy

sequence in (X, G) is G-convergent in (X, G).

PROPOSITION 1.4 [6] : In a G- metric space,(X, G), the following are equivalent.
(1) The sequence {x} is G- Cauchy.
(2) For every € > 0, there exists N eN such that G (X n, X m, Xm) <&, forall n,m>N.

PROPOSITION 1.5 [6] : Let (X, G) be a G- metric space. Then the function G (X, y, 2)
is jointly continuous in all three of its variables.

PROPOSITION 1.6 [6] : Let (X, G) be a G- metric space. Then for any

X, Y, z,a €X, it follows that

(1) iIfG(x,y,z)=0thenx =y =12,

(i) G(x,y,2) < G(X, x,y) +G(X, X, 2),

(iii) G(x, y, y) < 2G(x, X, y),

(iv) G(x, Y, 2) £G(x, a,2) + G(a, Y, 2),

(v) G(x,y,2) < %[G(x, a,a) + G(y, a, a) +G(z, a, a)].

PROPOSITION 1.7 [6] : Let (X, G) be a G- metric space. Then for a sequence
{Xxn} < Xand a point x € X, the following are equivalent

(i) {xn} is G- convergent to X,
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(ii) G(Xn, Xn, X) > 0 @S h — o0,
(iii) G(Xpn, X, X) = 0 as n — oo,

(iv) G(Xm, Xn, X) > 0asm, n — oo.

2. RESULTS
THEOREM 2.1: Let (X, G) be a complete G- metric space and
S, T,R, f, g, h: X — X be mappings such that

G(fx, gy, hz), G(fx, SX, Rz),}

211) G(Sx,Ty,Rz)>
( ) ( X, 1y Z) qmaX{G(gy'Ty’Sx), G(hZ,RZ,TY)

forall x,y,ze X and q >1,
(21.2)  h(X) = S(X), f(X) = T(X), 9(X) = R(X)
(2.1.3) one of f(X), g(X) and h(X) is a G- complete subspace of X,
(2.1.4) the pairs (f, S), (g, T) and (h, R) are weakly compatible.
Then (a) one of the pairs (f, S), (g, T) and (h, R) has a coincidence point in X or
(b) S, T, R, f, g and h have a unique common fixed point in X.
PROOF : Let xge X.
From (2.1.2), there exist X 1,X 2, X3 €X such that hx o = Sx 1=y, say,
fx1=Tx,=y, sayand gx, =RXx3=Yy3, say.
By induction, there exist sequences {x n} and {y} in X such that

hX 30 = SX3n+1 = Yan+1, ™Xane1 = TX 3042 = Yane2, OX 3042 = RX 3043 = Y3ne3, 1 =0, 1, 2,...

If Y 3n+1 = Yans2 then X =S X, where X = X 3p+1,
If Y 3n+2 = Yan+3 then g X = T X, where X = X 342,
If y3n =Yan+1 then h X =R X, where X = X 3.
Assume thaty , # yn+ forall n.
Denote d, = G(Yn, Y n+1, Y n+2)-
d3n1 = G(Y3n-1, Y 3n, Y3n+1)

= G(TX 3n-1, RX 3n, SX 3n+1)
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G(Yaniz: Yans Yane)s CWanizs Yanas yan)}

> max
{G(yiin’ y3n—l’ y3n+1)’ G(y3n+1’ y3n’ y3n—l)

=g max {d n, dan, d3n.1, d3n1} .

Thus we have d3,.1 > q d3,sothat ds, <k dsn.i, where k = 1 <1l
q

dan =G(Y3an, Yane1, Yane2)
= G(RX 3n, SX 3n+1, TX 3n42)

G + Yanear Yania)s G Vaniar Yanias Yan
G )
=g max {d an+1, dan, d3ne1, dan}
Thus we have d 3, > ¢ d 3741 S0 that d 3041 < k d 3.
dan+1 = G(Y 3n+1, Y 3n+2, Y 3n+3)
= G(SX 3n+1, TX 3n+2, RX 3n43)

G + Yanizs Yanea )y CVaniar Yanias Yane
sama e )
=g max {d sn+2, d3n+1, dane, danea}

Thus we have d 3n+1 > g d 3142 SO that d 3ps2 < K d gn41.
Hence G(yn,Yn+1, Yne2) K G(Yn1,Yn Yiel)

< k2 G( Yn-2,¥Yn1, Yn)

<k"G(Yo, Y1,¥2).
From (Ggs), we have

G(Yn.Yn Y1) SG(Yn Yo, Ynr2) K G(Yo, Y1,Y2)
From (Gs) for m > n we have

G(Yn Y Ym) SG(Yn Y Yne1) F G(Yne1 Y ne1, Yie2) + ...+ G( Ym-1,Y m-1, Y m)
<K+ K"+ L+ K™ Gy, Y1 Y2)
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n
<

G(Yo Y1.Y2)

—>0asn—>o,m-— oo,

Hence {y .} is G- Cauchy.

Suppose f(X) is a G-complete subspace of X. Then there exist p, t € X such that ysn.; —> p =ft.

Since {y n} is G- Cauchy, it follows that yz, — p and yzn«2 — p.
G( Sty zn+2, Yan+3) = G( St, TX 3n+2, RX 3n+3)

Zq max {G(p!y3n+3'y3n+4)’G(p’St1y3n+3) }
G(y3n+3’ y3n+2 ! St), G(y3n+4’ y3n+3’ y3n+2)

Letting n— oo, we get

G(St, p, p) 2 G(p, St, p).

Hence St=p. Thus ft = St = p.

Since (f, S) is a weakly compatible pair, we have f p = Sp.

G(Sp .Y 3n+2, Y 3n+3) = G( 'SP, TX 3n+2, RX 3n+3)

G(SP. Yansa: Yansa): G(SP.SP, Vp.5) }

> (] max {
G(y3n+3’ y3n+2’ Sp)! G(y3n+4’ y3n+3’ y3n+2)
Letting n— oo, we get

G(Sp, p, p) =g max { G(Sp, p, p), G(Sp, Sp, p), G(p, p, Sp ), 0}
1 .
2 q maX{G(Sp’ p’p)sz(Sp’ p’p)’ O}! since G( P, P, Sp) < ZG(Svapv p)

=qG(Sp,p,p)-
Hence Sp=p. Thusfp=Sp=p. ... (1)
Since p = Sp € T(X), there exists ve X such that p = Tv.
G(Sp, TV, Yan+3) = G(Sp, TV, RX 3n+3)

> g max {G(p, 0V, Yan.s)s G(P.P: Vanes) GOV, P,P), CVaness Yaness P} -

Letting n— co we get, 0>q max {G(p,av, p).0,G(gv, p,p),0)}.

Hence G(p, gv, p) =0 sothatgv =p. Thusgv=Tv =p.
Since (g, T) is a weakly compatible pair, we have g p = Tp.
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G(p, Tp, Y3an+3) = G(Sp, TV, RX 3n+3)

g {G(p,Tp, Ya1.4)sG(P:P: Yana), }
> max .
G(TP,TP.P),G(Yzn.4: Yaniar TP)

Letting n— oo we get

G(p, Tp, p) = gmax {G(p, Tp,p), 0, G(Tp, Tp,p ), G(p, p, Tp )}
1 ]
> g max {G(p,Tp,p),EG(p,p,Tp)} “since G(p, p, Tp) <2 G(Tp,Tp, p)

=qG(p,p. Tp).
Hence Tp=p. Thusgp=Tp=p. ... (2)
Since p = gp € R(X), there exists we X such that p = hw.
G(p, p, Rw) = G(Sp, Tp, Rw)
>qmax {G(p,p, p), G(p,p, RW),G(p,p,p),G(p,RW, p)}
=qG(p, p, Rw) .
Hence Rw = p. Thus hw = Rw = p.
Since (h, R) is a weakly compatible pair, we have Rp = hp.
G(p, p, Rp) = G(Sp, Tp, Rp)
>qmax {G(p,p, Rp), G(p,p, Rp), G(p, P, P), G(Rp,Rp, p)}

1 .
2 g max {G(p’p! Rp)’EG(pvp’ Rp)}, since G( P, P, Rp) <2 G(Rp! Rp1 p)

=d G(p, p, Rp).
Hence Rp=p. Thushp=Rp=p. ... 3)
From (1), (2) and (3) it follows that p is a common fixed pointof S, T, R, f, g and h.

Suppose p’ is another common fixed point of S, T, R, f, gand h.
G(p,p,p")=G(Sp,Tp,Rp")
> g max {G(p,p,p’),G(p,p,p').G(p,p.p),G®, P, p)}

1A 1 ! 3 14 14 [
> g max {G(p,p, p ),EG(p,p,p )}, since G(p,p,p’) <2 G(p',p’,p)
=q G(p,p.p’).
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Hence p'=p.

Thus p is a unique common fixed pointof S, T, R, f, g and h.

Similarly, the theorem holds if g(X) or h(X) is a G- complete subspace of X.
Finally, we prove the following in the similar lines.

THEOREM 2.2: Let (X, G) be a complete G- metric space and

S, T,R, f, g, h: X — X be mappings such that

22.1) G(Sx, Ty, Rz) > q mun{ggjgﬁytx))cgzj:z?)}
or
G(Sx, Ty, Rz) > q G(fx,gy,hz)
forall x,y,ze X and q >1,

(2.2.2) h(X) = S(X) , f(X) = T(X) , 9(X) = R(X) ,
(2.2.3) one of f(X), g(X) and h(X) is a G- complete subspace of X,
(2.2.4) the pairs (f, S), (g, T) and (h, R) are weakly compatible.
Then (a) one of the pairs (f, S), (g, T) and (h, R) has a coincidence point in X or

(b) S, T, R, f, g and h have a unique common fixed point in X.

The following example illustrates the Theorem 2.2.

Example 2.3 : Let X =[0,0) and G(x,y,z) = | X-y| +|y-z | +]|z-x |, V X,y,Zz € X.

Let S,T,R,f,g,h: X — X be defined by Sx= g ,  Ix= % ,  Rx=x,

fx = % gx:3—2, hng.

Clearly (2.2.2) — (2.2.4) are satisfied . Also G( Sx, Ty, Rz) =8 G(fx,gy,hz) forall x,y ,ze X.
Clearly “0” is the unique common fixed pointof S, T, R, f, g and h .
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