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ABSTRACT 
The probabilistic metric space as one of the important generalization of metric space was introduced by    

K. Menger in 1942. In this paper, we briefly discuss the historical developments of contraction mappings in 

probabilistic metric space with some fixed point results. 
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INTRODUCTION 

Analysis is an important branch of mathematics that was created in the seventeen century 

during scientific revolution. Since then, no other mathematical field has influenced the 

development of modern scientific thinking as deeply. Among its several branches, 

functional analysis appears as a rather complex blend of Algebra and Topology.  It does 

not have only great influence in mathematics but both pure and applied mathematicians 

are dealing with the nonlinear equations, which have great influence in physical, social, 

engineering and different technological fields. Analysis has been classified into two 

major branches: linear and non-linear analysis. Nonlinear analysis as an independent 

branch of mathematics, has been developed in the 1960’s by a great Polish mathematician 

L. E. J. Browder as a combination of functional analysis and variational analysis and the 

fixed point theory has unique role for the development of non-linear analysis. The brief 

historical account of the development of fixed point theorems has been studied by       

Pant et.al. [14].  

 

The notion of metric space always plays a fundamental role, since continuity in analysis 

for real and complex functions, depends upon the notion of distance and the 

generalization of analysis totally depends upon to study the continuity. Metric space was 

introduced by French mathematician M. Frechet in 1906 and since then there corresponds 

several generalizations of metric space in the literature. One of important generalization 

is probabilistic metric space (PM space) which was introduced by Austrian 

mathematician K. Menger [12] in 1942, using the notion of distribution functions in place 

of non-negative real numbers. Then, in 1959, A. Sklar and B. Schweizer [16] obtained 

some fundamental results in probabilistic metric spaces. In 1972, H. Sehgal and A. T. 

Bharucha-Reid [19] introduced contraction mapping on probabilistic metric space as an 

extension of famous Banach contraction principle (BCP) to study a fixed point under the 

special t-norm τM. Also, H. Sherwood [21] showed that, for a very large class of 
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triangular norms, it is possible to construct complete Menger probabilistic metric space 

together with the contractive mappings which do not have fixed point. Another type of 

contraction introduced by T.L. Hicks [8] in 1983, is very convenient definition, which is 

similar to the classical definition of contraction in metric space. But, in Menger space 

under minimum t-norm, H. Sehgal and A. T. Bharucha-Reid type contraction is also 

simple to study several contraction conditions in PM-space, and their usefulness for the 

establishment of fixed points with applications. Now, the contribution of Menger to 

resolve the interpretative issue of quantum mechanics has turned out to be of fundamental 

importance in probabilistic functional analysis and non-linear analysis, e.g.[7]. The 

purpose of this paper is to study briefly the contraction conditions in probabilistic metric 

space and its associated properties with some fixed point results. 

 

We have the following definitions. 

DEFINITION 1.1: Let M be a set and the distance function d is a mapping from M × M 

into 
+
, set of non-negative real numbers, satisfying the following conditions:  

   (d1) d(x, y) ≥  0   for x ≠ y,  (non-negativity) 

(d2) d(x, y) = 0  iff  x = y.  ( identity of indiscernibles) 

 (d3) d(x, y) = d(y, x),                           (symmetricity), 

   (d4) d(x, z) ≤ d(x, y) + d(y, z),             ( subaddivity / triangular inequality), 

   (d5) d(x, z) ≤ d(x, y)  d(y, z),            (strong triangular inequality), and 

(d6) d(x, x) = 0,                                  (reflexivity), 

 Then, the pair (M, d) is called  

1. Metric space if it satisfies conditions (d1), (d2), (d3) and (d4); 

2. Pseudometric space if it satisfies conditions (d1), (d3), (d4) and (d6); 

3. Quasi-metric space if it satisfies conditions (d1), (d2), and (d4), and 

4.   Semi- metric space if it satisfies conditions (d1), (d2) and (d3). 

DEFINITION 1.2[3]: A triangular norm (shortly t-norm) is a binary operation T (or  

or *) on [0, 1] which is associative, commutative, non-decreasing at both places and has  

1 as the unit element and  T(a, 1) = a for every a  [0, 1]. 

The basic examples are the t-norms TL(Lukasiewicz t-norm), TP and TM (Min norm), 

defined by  TL(a, b) = max {a + b – 1, 0}, TP (a, b) = a b and TM(a, b) = min {a, b}. 
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DEFINITION 1.3:  A mapping F:  → 
+
 is called a distribution function if it is non-

decreasing and left-continuous with InftF (t) = 0, and  Supt F(t) = 1. 

We denote + to be the class of all distribution functions F such that F (0) = 0. A distance 

distribution function is a mapping F: [0, )   [0, 1] which is non-decreasing, left 

continuous on (0, ) and F(0) = 0. Also, D+ is the subset of + containing all functions F 

with the condition .1)(  tFLimt  

DEFINITION 1.4: A probabilistic metric space (briefly, a PM-space), is a pair (X, F), 

where X is a nonempty set and F is a mapping from X  X to + such that for each         

(u, v)  X  X, the probabilistic distribution function F(u, v) denoted by Fu,v or Fuv, are 

assumed to satisfy the following conditions: 

   PM1.         Fu,v(x) = 1 for every x > 0 if and only if u = v, 

   PM2.         Fu,v(0) = 0 for every u, v  X,  

   PM3.         Fu,v(x) = Fv,u(x) for every u, v  X, and 

   PM4.        If Fu,v(x) = 1 and Fu,w(x) = 1, then Fw,v(x + y) = 1 for every  u, v, w  X. 

DEFINITION 1.5: The pair (X, F) is called a probabilistic semi metric space (shortly 

PSM space) if  (i) Fxy = 0 if and only if x = y, and (ii)  Fxy = Fyx  for all x, y  X, where 

the function H = 0, an element of D+, is defined by 0(t) = 1 for t > 0 and  0(0) = 0. 

DEFINITION 1.6: A probabilistic metric space (or generalized Menger space) is a triple 

(X, F, T), where (X, F) is PSM space and T is a t-norm with the following condition: 

               Fu,w(x + y)  T(Fu,v(x), Fv, w(y)) for every u, v, w  X and x, y  
+
. 

A Menger PM space is a generalized Menger space such that Range (F)  D+. 

 

EXAMPLE 1.1: Let S = [0, a] and F be a mapping defined on S  S with values into    


+
 given by Fxy = ½(H0 + Hx-y) where H is characteristic function defined on S  S as in 

definition 1.5. Then, (S, F, m) is a probabilistic metric space.  

 

DEFINITION 1.7: The order pair (E, T) is called E-space over (X, d)  if E is the 

collection of all random variable from a probabilistic space (, A, P) into (X, d) such that 

for every p, q  E and every real number t, the set {w   : d (p(w), q(w)) < t} A. 

DEFINITION 1.8: A topological space is called separable if it contains a countable 

dense subset, that is, there exists a sequence  of elements of the space such that 

every nonempty open subset of the space contains at least one element of the sequence. 
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DEFINITION 1.9: A topological space X is said to be a Hausdorff space if any two 

distinct points of X can be separated by disjoint neighborhoods. 

 

DEFINITION 1.10: If  is an extended real valued function defined on a measurable  set 

E, then  is a measurable if, for each  in , the set [x: (x) > ] is measurable. 

 

DEFINITION 1.11: Let (X, F, *) be a Menger space and * be a continuous t- norm. 

Then, a sequence {xn} in a Menger space (X, F,) is said to converge to a point x in         

X  (written as xn  x) if for every  > 0 and   (0, 1), there is an integer no = no(, ) 

such that   Fx, () > 1-  for all n  no. It is noted that the limit of a convergent 

sequence in PM space is always unique.  

DEFINITION 1.12: The sequence {xn} is called Cauchy if for every  > 0 and                

  (0, 1), there is an integer no = no(, ) such that F , xm() > 1-  for all n, m  no. 

Also, a Menger space (X, F, ) is said to be complete if every Cauchy sequence in it 

converges to a point of it. 

 

DEFINITION 1.13: A PM space X is said to be compact if every sequence in X has a 

convergent subsequence. 

 

DEFINITION 1.14:  Let f : X X be a mapping. A point x in X is a fixed point of f  if,    

f (x) = x. 

 

DEFINITION 1.15: A subset E of 
n
 is a Lebesgue measurable if, for every   > 0, there 

exist closed set F and open set U such that F  E  U and (U\F) < . In this case, the 

Lebesgue measure (E) of E is 
*
(E).  

 

DEFINITION 1.16: Let (X, F) be a PM space. A self mapping f : X  X is called 

locally power contraction if for each p X, there exists an integer n(p) = n(p, x) where    

x is positive real number such that )/()( ,)(),( )()( kxFxF qpqfpf pnpn  , for some k in (0, 1) and 

for all q in S. The powers of f are defined by f
 0

(p) = p, and f 
n+1

(p) = f (f 
n
(p)), n  0. 

 

CONTRACTION CONDITIONS IN PM SPACE 

In this section, two major types of contraction mappings viz B-type contraction and       

H-type contraction in probabilistic metric space and their recent development in 

generalized forms, which will be discussed.  

 

We start with the following definition of contraction condition in PM space introduction 

by H. Sehgal and A. T. Bharucha-Reid in 1972. 
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DEFINITION 2.1[19]: Let (X, F) be a PM space. A mapping T: X → X is a contraction 

mapping (or a SB-Contraction mapping or simply C-contraction) on (X, F) if and only if 

there exists α  (0, 1) such that     FTp, Tq(t) ≥ Fp, q (t/α)   where p, q  X and t > 0. 

DEFINITION 2.2[15]: A self mapping f on a PSM space (S, F) is called a B-contraction 

if there is a  in (0, 1) such that for all points p, q in S and all x > 0, Ffp, fq(x)  Fp, q(x). 

The following definitions of contraction condition in PM space and PMS space were 

introduced by T. L. Hicks in 1983. 

DEFINITION 2.3[8]: If (S, F) is a PM space, a mapping f : S  S is called                    

H-contraction (also, known as Hicks C-contraction) if there exists k  (0, 1) such that for 

every  p, q  S and t > 0,  we have Ffp, fq(kx) > 1- kt  whenever Fp, q(x) > 1 – t. 

DEFINITION 2.4[8]: A mapping f: S → S, where (S, F) is a PSM space, is an               

H-contraction if there is a k  (0, 1) such that for every p, q  S and every x > 0, 

  Fp,q(x) > 1 – x implies  Ffp,fq(kx) > 1 – kx.  

Let (S, F) be a probabilistic semi-metric space and for every p, q  S, we have  

(p, q) = Inf{ H: Fp,q (h
+
) > 1 – h}. If (S, F, T) is a PM space with T  Tm, where 

tm(x, y) = max{x + y – 1, 0}, for each (x, y)  [0, 1]
2
, then  is a metric on S.  

V. Radu, in 1985, showed that every H-contraction in the Menger space (S, F, T) with     

T  TL, where TL is Lukasiewiez t-norm in Menger space, is actually a Banach contraction 

in the metric space (S, K), where K(p, q) = sup {t  0: t  1 – Fpq(t)} and established the 

following theorem. 

 

THEOREM 2.1[15]: The mapping f : S  S is an H-contraction on the PM space         

(S, F , τ) with  τ  τM if and only if f is a contraction on the metric space (S, β).  

With this condition τ  τM, H- contraction on complete PM space has a fixed point, but it 

is not true for B-contraction. So, it is clear that B-contraction need not be H-contraction. 

Also, H-contraction need not be B-contraction. For this, we have the following example: 

 

EXAMPLE 2.1[17]: Let S = {0, 1, 2, 3,…} and for p  q, we define F : S  S  + such 

that 

              Fpq(x) = Fqp(x) = . 
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Then, (S, F, τM) is a PM space. Also, we define f : S  S such that   f (r) = r + 1. Then, 

τM  τW and β(f p, f q) =  β(p, q)/2, which implies that f is an H-contraction. Again, let     

be any number in (0, 1) and we choose x  (1, 1/). Then, we have  x < 1 and so that  

Ff (0)f (1) ((x)) = F12(x)  ½ < 1 = F01(x),   whence f  is not a B-contraction on (S, F). 

Now, the following lemma explains that B-contraction in a PSM space is stronger than 

that of  H-contraction   

LEMMA 2.1[17]: If f is B-contraction on the PSM space (S, F) and if the distribution 

function Ff p,f q is strictly increasing on [0, 1], then β(f p, f q) < β(p, q). 

Proof: We find η such that 0 < η <  β(p, q). Then, we have β(p, q) > [β(p, q) + η]. 

Since Ffp,fq is strictly increasing on [0, 1], so 0  β(p, q)  1, and since f is a                     

B-contraction, so we have   

        β (fp, fq) =  Ffp,fq(β(p, q)) > Ffp,fq([β(p, q) + η])  Fpq(β(p, q) + n  > 1- β(p, q). 

This implies that β(f p, f q) < β(p, q). This completes the proof. 

Again, B. Schweizer, H. Sherwood and R.M. Tardiff in 1988 obtained the following 

relationship between B-contraction and H-contraction in probabilistic semi-metric space. 

THEOREM 2.2[17]: Let (S, F) be a PSM space. Suppose that Ran(F) is finite and that 

each element of Ran(F)\{o} is strictly increasing on [0, 1], where 0 is defined as in 

definition (1.5). Then, every B-contraction on (S, F) is an H-contraction. 

In general, every B-contraction need not be an H-contraction. To show this, we have the 

following example: 

EXAMPLE 2.2[17]: For each integer n, let pn : (0, 1)  
+
 be given by 

 pn(t) = 2
-n

(1- t)t
-1

. Also, let S = { pn : n is an integer}, let P be Lebesgue measure on      

(0, 1), and for x  0, let 
mn ppF , (x) = P{t (0, 1) : pn(t) – pm(t) < x}  =   x/ (x +  2

-n
 – 2

-m
 ).  

Then, a function    f : S  S defined by f (pn) = pn+1, is a B-contraction but is not H-

contraction. 

LEMMA 2.2: Let (S, ) be a PSM space, then f : S  Cl(S), where Cl(S) is the family of 

nonempty closed subsets of S,  be a B-contraction type mapping such that each element 

of Ran( \{o} is strictly increasing on [0, 1]. Then, we have D(fp, fq)  (p, q),                         

for every p, q  S. 

If (S, F, t) is a Menger space such that t  tm , then D(fp, fq) < (p, q) for every p  q. 
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THEOREM 2.3[17]: Let (S, F) be a PSM space, and f : S  Com(S), Com(S) being 

nonempty compact subsets of S, be a B-contraction type mapping. If Ran (F) is finite and 

each element of Ran ( )\{o}is strictly increasing on [0, 1], then there exists   (0, 1) 

such that   D(fp, fq)   (p, q), for every p, q  S, where D is defined by                                        

   D(A, B) = max{ (p, q)}. 

With the above results, we have the following remark. 

REMARK: If (S, F, t) is a Menger space such that t  tm and that (S, ) is a compact 

metric space, then there exists a fixed point result for f, where f : S  Cl(S), Cl(S) being 

the family of nonempty closed subsets of S, with a B-contraction and  is such that every 

element of Ran(F)\ {o} is strictly increasing. 

Now, we discuss some generalized contraction mappings in PM-space with properties. 

We consider comparison functions from the class  of all mapping   : (0, 1)  (0, 1) 

with the properties: (i)  is an  increasing bijection, (ii) (t) < t for all t (0, 1). It is noted 

that every such a comparison mapping is continuous. In 1975, Ciric introduced the notion 

of generalized contraction on a probabilistic metric space and Istratecu [9], in 1981, 

suggested some interesting problems to study the existence of fixed points of locally 

power contracting mapping. 

DEFINITION 2.5[1]. Let (X, F) be a PM space, a mapping f : X  X  is said to be a 

generalized C-contraction if there exist a continuous, decreasing function h: [0, 1]      

[0, ] such that h(1) = 0, and for m1, m2  M, and k  (0, 1) such that the following 

implication holds: for every  p, q  X and for every t > 0,  hoFp,q(m2(t)) < m1(t) implies 

that    hoFf(p),f(q)(m2(kt)) < m1(kt).  

As a generalization of probabilistic B-contraction, we have the following notion of a 

probabilistic (m, k)-B-contraction for m  1 and k  (0, 1). 

DEFINITION 2.6 [13]: If (S, ) is a PSM space, m  1 and k  (0, 1), a function           

f: S  S is called probabilistic (m, k)-B-contraction if for any p, q  S, there is an i with  

1  i  m such that for every t > 0, we have  Ff
i
p, f

i
q(k

i
t)  Fp,q(t). 

If m = 1 and k(0, 1), then a probabilistic (1, k)-B-contraction f is a probabilistic           

B-contraction. 

DEFINITION 2.7[13]: If (S, ) is a PSM space, m > 1 and k  (0, 1), a function f: S→S 

is called probabilistic (m, k)-C-contraction if for any p, q  S,  there is i with 1  i  m 

such that for every t > 0,   Fp,q(t) > 1 – t ⇒ Ff
i
p, f

i
q(k

i
t) > 1 - k

i
t. 

If m = 1 and k  (0, 1), then a probabilistic (1, k)-C-contraction f is a probabilistic           

C-contraction. 
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If m1(s) = m2(s) = s, and h(s) = 1 – s for every s  [0, 1], we obtain the Hicks definition. 

 

DEFINITION 2.8[17]: A Menger PM-space is a triplet (E, F, ), where (E, F) is a       

PM space and  is t-norm satisfying the following triangle inequality: 

 for all x, y, z E and t1, t2 > 0,  Fx,y(t1, t2)  ( Fx,y(t1), Fy,z(t2)). 

  

In 1960, B. Schweizer, A. Sklar and E. Thorp proved that if (E, F, ) is a Menger        

PM space with Sup0<t<1 (t, t) = 1, then (E, F, ) is a Hausdorff topological space with 

topology T  induced by the set of (-)-neighborhoods  {Up(, ): p  E,  >0,  > 0}, 

where Up(, ) = {x  E, Fx, p () > 1 - }. For each two probabilistic bounded subsets    

A and B from S, we have )()( ,, sFSupInfSupuF yxByAxusBA  . 

In 1990, O. Hadzic extended H-contraction into the following H1-contraction and    

H2-contraction type mappings in PSM space. 

 

DEFINITION 2.9[6]: Let (S, F) be a PSM space, f : S  B(S), B(S) being nonempty 

bounded subset of S and there exists k  (0, 1) such that the following implication holds: 

for every p, q  S and u > 0: Fp,q(u) > 1 – u  fp,fq(ku) > 1 – ku. Then, the function f is 

an H1- contraction type mapping. 

DEFINITION 2.10[5]: Let (S, F) be a PSM space, f : S  n(S) and there exists               

k  (0, 1) such that the following implication holds for every p, q  S and x > 0: 

  Fp,q(x) > 1 – x  for every u  fp there exist  v(u)  fq such that Fu,v(u)(kx) > 1 – kx. 

Then, the function f  is an H2- contraction type mapping. 

THEOREM 2.4[6]: Let (S, F) be a PSM space and f: S  n(B(S)) is an H1- contraction. 

Then, f is an H2 – contraction and D(f p, f q)  k. (p, q) for every p, q  S. 

REMARK: If D(fp, fq)  (p, q) holds for every p, q  S and that Fp,q(x) > 1 – x. Then, 

this implies that (p, q) < x and D(fp, fq)  (p, q) implies that D(fp, fq) < x. Using 

the definition of D , we have  < x and  < x. Then, 

we have   < x, for every u  fp and  < x, for every v  fq. Since 

fp and fq are compact for every u  fp, there exists v(u)  fq such that   

Fu,v(u)( x) > 1 - x. Thus,  f  is H2- contraction. 

LEMMA 2.4[3]: Let (S, F,) be a generalized Menger space,  be a t- norm satisfying 

for all t, s  [0, 1] and let {pn}, {qn} be two sequences in S with  



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY   

VOL. 7, No. I, SEPTEMBER, 2011, pp  79- 91 

 

 

 

 

87 

 pn  p , qn  q, respectively. Then, we have 

(1) For any given t  R,  (t)  Fp,q(t). 

(2) If t   is a continuous point of Fp, q, then  (t) = Fp,q(t). 

In 1996, S.S. Chang, S.S. Lee, Y.J. Cho, Q.Y. Chen, S.M. Kang and J.S. Jung defined the 

following Menger probabilistic normed space. 

 

DEFINITION 2.11[3]: A triplet (E, F, ) is called a Menger probabilistic normed space 

(briefly, a Menger PN-space) if E is a real vector space, F is a distribution function  from 

E into D and  is a t-norm satisfying the following conditions: 

  PN1.  Fx(0) = 0, 

  PN2.  Fx(t) = H(t) for all t > 0 if and only if x = 0, 

  PN3.  Fx(t) = Fx( t/) for all  R,    0, and 

            PN4.  Fx+y(t1 + t2)  (Fx(t1), Fy(t2)) for all x, y  E and t1, t2  
+
. 

 

DEFINITION 2.12: Let (E, F, ) be a Menger probabilistic space. Then, a subset of E is 

said to be probabilistically bounded if t) = 1.  

In 2005, D. Mihet introduced the following weak-Hicks contraction in probabilistic 

semimetric space as a generalization of Hicks contraction. 

 

DEFINITION 2.13[13] Let (S, F) be a probabilistic semimetric space. A self mapping A 

of S is called a weak-Hicks contraction (shortly, wH contraction) if there exists k  (0, 1) 

such that for all  p, q  S and each  t (0, 1),  we have  

         Fpq(t) > 1 – t  implies FA(p), A(q)(kt) > 1 – kt . 

The class of wH-contraction is strictly larger than that of C-contraction. It is noted that 

every wH-contraction is (uniformly) continuous [13]. 

 

DEFINITION 2.14 [13]: A PSM space (S, F) is an H-space if it satisfies the triangle 

inequality: for  > 0, there exists  > 0, Fpq() > 1 - , Fqr() > 1 - ,  this implies       

Fpr() > 1 - . 

It is noted that every Menger space (S, F, T) with T satisfying 1),(1  aaTSupa , is an       

H-space. In 2009, A. Beitollahi and P. Azhdari introduced the following multi-valued 

mapping ( - k) – B contraction, as a generalization of B-contraction for single valued 

mapping introduced by D. Mihet [13].  

 

DEFINITION 2.15[2]: Let S be a nonempty set,  , k  (0, 1), and F be a 

probabilistic distance on S. Then, a mapping f : S  2
S
 is called a multi-valued ( - k) – 

B contraction if for every x, y  S,  > 0 and for all t  (0, 1) the following implication 

holds:    Fxy() > 1 – t  for each  p  fx  there corresponds q  fy : Fpq(k) > 1 - (t), 
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where 2
S
 denotes the class of all nonempty subsets of the set S and C(S) is the class of all 

nonempty closed (in the F-topology) subsets of S. 

 

DEFINITION 2.16[12]: Let (X, F) be a PSM space and  (0, 1). A mapping f : X X 

is called probabilistic -contractive if )()()(),( tFtF yxyfxf  whenever Fxy(t) > 1 -  and x  y. 

 

SOME FIXED POINT RESULTS IN PM SPACE 
In this section, we state some fixed point results for single self maps in PM  and PSM spaces. In 

1981, V.I. Istratecu proposed the interesting problem of studying the existence of fixed points of 

locally power contracting mapping.  

 

THEOREM 3.1:  A sequence {pn} in a PM space X converges to p if and only if for 

every  x ,  we have lim Fp,pn(x) = H(x). 

THEOREM 3.2[1]: Let (X, F) be a complete PM space, and if for every p  X, there 

exists a positive integer n (p) = n (p, x) such that Ff n(p),f n(q) (x)  (DOp,q (f)o(x)), where    

n  n(p) and q  X. Then, there exists p  X such that Ffk(q), p(x)  H(x) as k   for      

q  X. 

In 1990, O. Hadzic introduced the notion of a multi-valued probabilistic -contraction by 

using the notion of non-compactness, which is as follows:  

THEOREM 3.3[6]: Let (S, F) be a PSM space and f: S → Com(S), Com(S) being a 

nonempty compact subsets of S, be a B-contraction type mapping. If Ran(F) is finite and 

each element of Ran(F)\{εo} is strictly increasing on [0, 1], then there exists   (0, 1) 

such that  D(fp, fq)  (p, q),   for every p, q S,  where D is defined by: 

 D(A, B) = max{ , }. 

In 1992, I. Beg, S. Rahman and N. Shahzad proved following fixed point theorem in 

complete PM space.  

 

THEOREM 3.4[1]: Let (X, F) be a complete PM space. If for every p X, there exists a 

positive integer n(p) = n(p, x) such that  Ff
n

(p),f
n

(q) (x)  (DOp, q(f)o(x)), where n  n(p) and 

q  X. Then, there exists p in X such that  Ff k(q), p (x)  H(x) as k    for q in X.                                                 

 

THEOREM 3.5[1]: Let (X, F, τ) be a complete PM space under τ with           

        sup {τ (F, F): F < H}. If for every p  X ,  Ff(p),f(q) (x)  (DOp, q(f)o(x)), 

where q  X, then f has a fixed point and there exists a point p in X such that  

Ff k(q), p (x)  H(x) as k   for any q in X.                                                 

In 1996, S. S. Chang, B. S. Lee, Y. J. Cho, Y. Q. Chen, S. M. Kang, and J. S. Jung 

proved the following fixed point theorems in complete PN space. 

 

THEOREM 3.6[3]: Let (E, F, ) be a complete PM space with a t-norm  satisfying (t, 

t)  t for all t  [0, 1]. Let T: E  E be a mapping with    
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           FTx, Ty(t)  Fx,y(t/k(, ))       (3.1) 

for all x, y  E, t  0 and ,   (0, +∞) with Fxy() > 0 and Fx,y < 1, where k(, ):       

(0, +)
2
  (0, 1) is a function. Then, T has exactly one fixed point in E.  

In the sequel, the mapping T that satisfies (3.1) is called a generalized contraction 

mapping on E. 

 

THEOREM 3.7[3]: Let (E, F, ) be  a complete Menger PN space, C be a 

probabilistically bounded closed convex subset of E, T : C  E be a generalized 

contraction mapping defined on C and S : C  E be a continuous mapping with S(C) 

being relatively compact. If Tx + Ty  C for all  x, y  C, then T + S has a fixed point in 

C. 

In 2006, M.B. Ghaemi and A. Razani established fixed point and periodic point for single 

self mappings in Menger PM space. 

 

THEOREM 3.8.[5]: Let (S, F, T) be a Menger PM space. If A is a C-contraction on S 

and for some u in S, then ( )(uA in
) is a convergent subsequence of (A

n
(u)), and the point                         

  = )(uALim in

n  is the unique fixed point of A. 

In 2008, D. Mihet proved following fixed point results for weak Hick’s contraction. 

 

THEOREM 3.9[13]: Let (X, F) be an H space and A be a weak – Hicks contraction on 

X. If there exists x  X such that FxA(x)(1) > 0 and the sequence (A
n
(p))nN has a 

convergent subsequence, then (A
n
(p)) converges to a fixed point of A.  

 

EXAMPLE 3.1: Let 
),max(

),min(
)(

yx

yx
tF yx  , for all t (0, ), and for all x, y  0, x  y. Then,   X 

= [0, ) is a complete generalized Menger space under the triangular norm TP  TL. Also, the 

mapping g : X  X defined by g(x) = 1, if x > 0, and g(0) = 0, is a wH-contraction. This mapping 

has two fixed points: x = 0 and x = 1. So, unlike C-contractions, a weak H-contraction is not 

necessarily a Banach contraction on the metric space (S, K), where  

         K(p, q) = sup {t  0: t  1 – Fpq(t)}. 

THEOREM 3.10[11]: Let (X, F, T) be a Menger PM space with the t-norm T satisfying 

the condition of Lemma 2.4 and f : X X be a probabilistic -contractive mapping. 

Suppose that for some x X, the sequence (f
 n

(x)), n , contains a convergent 

subsequence with x* as its limit. Then, x* is the unique fixed point of f. 

 

In 2009, A. Beitollahi and P. Azhdari proved the following fixed point theorems for 

multi-valued contraction on complete Menger space. 

 

THEOREM 3.11[2]: Let (S, F, T) be a complete Menger space with sup0a<1 T(a, a) = 1 

and  f : S C(S) be a multi-valued ( - k) – B contraction. If there exist p  S and q  f p 
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such that Fpq D+ and limnT


i=1(1 -  
n+i-1

()) = 1, for every   (0, 1), then f  has a 

fixed point. 

 

THEOREM 3.12[2]: Let (S, F, T) be a complete Menger space, T a t-norm such that  

sup0a<1 T(a, a) = 1, M a nonempty and closed subset of S, f : M C(M) be a multi-

valued ( - k) – B contraction and also weakly demicompact. If there exist x0  M and 

x1 f x0 such that Fx0 x1 D+
 
, where D+ being the set of all distribution functions, then f 

has a fixed point. 
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