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ABSTRACT 
We consider the problem of obtaining an optimal mixed-model sequence under the just-in-time 

environment.  Industrial applications include the production planning, real-time scheduling, response time 

variability and networking.   The single-level problems are already solved, but they are strongly NP-hard in 

the multi-levels. Here,  we study a bottleneck product rate variation problem  with a general  objective  

where  a given  set  of sequences  serves  as  chain  constraints.   We  extend the previous  result  of a  

similar  problem  with  min-max deviation  objective  in  single- level.  We present a pseudo-polynomial 

algorithm that obtains an optimal solution for the considered objective.  The results are valid for 

precedence constraints. 

 

Keywords: integer programming, just-in-time sequencing, mixed-model systems, 

bottleneck product rate variation, precedence constraints. 
 

INTRODUCTION  
The  main  objective of the mixed-model  just-in-time systems is to increase  profit 

by reducing  cost  of diversified  small-lot  instead  of large-lot  producing  only 

required  parts in necessary  quantity when needed.  The flexible transfer lines have 

been implemented, where negligible switch over costs from one model to another 

have feasibility.  This system satisfies the customer demands for a variety of 

products without incurring large shortages or holding large inventories.  It has to 

utilize the elegant mathematical concept of equally penalizing jobs both for being 

tardy and for being early. One of the most important minimization problems is to 

determine a sequence such that it maintains the actual production level and the 

desired one as close to each other as possible during the production process.  This 

minimizes the deviation between the actual and the ideal (desired) one and 

maintains the assembly line keeping rate of parts usage as constant as possible.  

Such sequences have been called balanced, fair or level. A schedule is the 

corresponding t ime table. 

 

The single-level problems and the multi-level problems with pegging assumption are 

al- ready solved, but the multi-level problems are strongly NP-hard. If outputs at 

production levels which feed the final assembly level are dedicated to the final 

product into which they will be assembled,  then the problem with pegging is 

equivalent to a weighted single-level problem which can then be minimized by 

modified algorithm for un-weighted single-level problem.  The minimization of 
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maximum deviation is co-NP, but the complexity of these problems remains open 

for the binary encoding [2]. 

 

Researchers a n d  professionals have been considering different objective 

functions, like maximum or the sum deviations.  There is no absolute 

understanding that the specific objective function among others is the best one.  

In this work, we sketch the past results with the classical bottleneck objective 

functions and give a modification of the existing algorithms, which fit, to our 

proposed more general maximum deviation objective.  Hence, we generalize the 

previous results. 

 

Research in mixed-model just-in-time sequencing problem begins after Monden [18] 

(see also [14]). Miltenburg [17] gives a nonlinear integer programming formulation 

of the single-level problem.  Steiner and Yeomans [20] (see also [2]) solve the 

single-level problem for absolute deviation which is also applicable for  multi-

level with pegging assumption [19]. Steiner and Yeomans [19] prove that the 

cyclic sequences for maximum deviation are optimal.  These results help on 

reducing the time complexity. Kubiak [16] gives a geometric proof and Brauner et 

al. [3]  exploit the elegant concept of balanced words  and gives an algebraic proof of 

the small deviation conjecture of [2]. Kovalyov et al. [15] illustrate the 

computational results. Corominas and Moreno [4] establishes optimality relations 

between different objective functions.  For the recent survey and the accurate 

references, we refer to [1, 7, 9]. 

 

Dhamala et al. [6] answer the question of [9] on the bound of squared-deviation 

and minimize this objective function. Recently, these results are generalized in 

[13]. Dhamala  [8] and  Dhamala and Kubiak [10] have  added  the first-order  

first-serve  concept in  studying  the mixed-model  just-in-time  sequencing  

problem.    Given  a  set  of non-overlapping  sequences  as  chain  constraints, they 

give a  pseudo-polynomial algorithm, which  obtains an  optimal solution to the 

whole instance that preserves  the customers orders. The objective function they 

have considered is  the absolute-deviation.   This algorithm is also of pseudo-

polynomial time. 

 

Very recently, Dhamala [5] extends the results and  proposes  a pseudo-

polynomial time algorithm  by combining  the above  both  concepts  in [8, 6] to 

solve the bottleneck product rate variation problem with chain  constraints and  a 

squared  deviation objective. In this paper, we give new extensions of the results in 

[5] for a more general objective, recently proposed by [13] and the precedence 

constraints. 

 

The plan of the paper is as follows. Section 2 gives a brief overview of the mixed-

model just-in-time sequencing algorithms with different min-max objectives. In this 

section, we modify the formulation with additional chain constraints.  Section 3 

reviews the literature. In Section 4, we present a pseudo-polynoimal algorithm for 

our problem which is our main result.  The final section concludes the paper. 
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OPTIMIZATION PROBLEMS 

For , given n products  (models )  positive integers (demands )   

and   convex-symmetric  functions    of deviation,  all assuming  minimum  0 at 

0, we consider the following nonlinear  integer  programming problem  given  in 

[17, 20].  Find a sequence  wi th  total demand where 

product  occurs exactly  times that minimizes the following objective 

function. 

\ 

                                                                                          (1) 

 

where  represents the number of product  copies in the prefix 

, and .  To the function F, there have 

been studied two objectives 

 

 
 

of squared  deviation and absolute deviation, respectively. 

 

Its solution always keeps the actual production  level   and the desired 

production  level  as close to each other as possible all the times.  The maximum 

deviation mixed-model just-in-time sequencing problem is also denoted by min-max 

problem. 

 

The nonlinear  integer programming problem  modeled above should satisfy the 

following sets  of the cardinality,  monotonicity  and  integrality  constraints,  (see 

[ 1 7 ,  2 0 ] ): 

 

  

  

                                                  

                                                  
 

The first constraint ensures that exactly  units are scheduled in periods  

through , whereas the second constraint ensures that production requirements are 

met for each product.   The  third constraint  guarantees  that the total 

production  of every  product over  is non-decreasing  function,  whereas  the last  

one is integrality  constraint.  These four constraints jointly indicate that exactly 
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one product is produced during each stage. 

 

Note  that the above  formulation  gives the following number-theoretic  

interpretation  of JIT sequencing  problem:   given  n  rational  numbers  ,  

, with  common denominator D, the problem is to find   integers 

  which optimally approximate the sequence   under  the cardinality  and  

monotonicity  restrictions  defined  above  (see [2], for the references). 

 

The set of all feasible solutions satisfying the above constraints is denoted by the 

space }.  Thus, the mixed-model just-in-time sequencing 

problem is equivalent to the following optimization problem 

 

min  

 

A feasible solution  of the min-max problem of n models is called B-

feasible if  holds for the  matrix variables 

  The restricted space of all B-feasible solutions is denoted by B . 

 

We recall the model of [8] by adopting the constraints given by the following. 

 

C hain1  :  u(n1 , D1)   =  u(n1, D1)1  u(n1 , D1)2    . . . u(n1 , D1)D1
 

C hain2  :  u(n2 , D2 )      =    u(n2 , D2 )1  u(n2 , D2 )2    . . . u(n2 , D2 )D2 

 
 

C haint  :  u(nt , Dt )                          =   u(nt , Dt )1  u(nt , Dt )2    . . . u(nt , Dt )Dt 

 
 

C hainm  :  u(nm , Dm)  =  u(nm , Dm)1  u(nm , Dm)2    . . . u(nm , Dm)Dm 

 

be the –feasible sequences of length , where ,  of given 

models  respectively. The system is called overlapping if there exists a 

common product in more than one chain. Here, we give algorithms for the problem with 

non overlapping system. 

 

We extend the previous results and obtain a B-feasible sequence  with total 

demand  for mixed-model just-in-time sequencing problem such that the 

mapping satisfies  for all  and has the least 

maximum deviation with a general objective, that is,  for any sequence 
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 satisfying   The restriction mapping denoted as 

 of the supper sequence s to any given subsequence  

yields the given sequence  Therefore, the supper sequence s that contains 

 as its subsequence is order preserving with respect to the m-chain constraints 

 if  for all  and We call such a 

sequence by order-preserving sequence. 

 

 

LITERATURE SURVEY  

Steiner and Yeomans [20] solve the min-max problem reducing it to a single 

machine scheduling decision problem with release times and due dates.  They 

represent it as a perfect matching in a  -convex bipartite graph  

where  denotes positions and 

 denotes the copies of the products. By 

this, if  then  with  There exists an edge 

 if and only if k lies in the interval    of release 

time and due date for the  copy of the product    Steiner and Yeomans [20] 

prove the following results (see also [2] ). 

 

Lemma 1 Let be any instance of min-max-absolute problem.  A sequence 

 i s  B-feasible if and only if for all  and , this 

sequence assigns the copy  to the interval  where 

 denote the release date and the due 

date of the copy (i, j) for given upper bound B 

Glover’s [11] O(|E|) modified Earliest Due Date algorithm is applied for finding a 

maxi-mum matching in the V1 -convex bipartite graph such that 

each ascending   is matched to the unmatched copy  with smallest due 

date    

 

The  is tight lower bound for the min-max-absolute problem. 

 

Theorem 1  An  optimal  solution  can be determined  by an exact  pseudo-

polynomial  algorithm  with complexity   

 

The sets of optimal sequences for the min-max-absolute and the min-max-squared 

problems include cyclic sequences, [19, 6], reducing the computational time. 

 

There exist dynamic programming and heuristic algorithms for solving the mixed-

model just-in-time sequencing problems, see [7]. 

The derivation of similar closed formulas given by Lemma 1 for other measures of 

deviations was asked by [9]. Dhamala et al. [6] solved the open question of [9] 
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and presented the closed formula (cf. Lemma 2) for the squared deviation objective 

function of the mixed-model just-in-time sequencing problem. 

 

Lemma 2 Let B be the given target value for the squared deviation objective 

function. Then, for , the unique integers  

 define the feasible interval. 

 

Any instance of the min-max problem has a feasible sequence if and only if, the V1 -

convex bipartite graph formed by the instance has an order-preserving perfect 

matching. 

 

With these calculated bounds B and the necessary modifications on the solution 

method already applied for the bottleneck product rate variation problem with 

absolute deviation objective in [ 20 ,  2 ] , Dhamala et al. [6] solved the min-max 

problem w i t h  squared d e v i a t i o n  objective function.   The t ime complexity is 

pseudo-polynomial (cf. Theorem 2), which improves the previous solution 

approaches. 

 

Theorem 2 A bisection search algorithm applied in the interval  

 obtains an optimal sequence of the squared deviation 

sequencing problem with time complexity  

The optimal  satisfies the inequality , for any 

demand  of the absolute objective. For  an 

instance with  has optimal  if and only 

if  for  [2, 3, 16].  

 

Dhamala [5] uses these methods to solve min-max problem with squared deviation 

and chain constraints.  Khadka and Dhamala [13] define the following objective 

function 

 

 
 

for any positive integer m, denoted by Fm  and obtain the explicit formula for the 

required target value for this general objective.  With this they show that the 

problem with this objective can be solved with the same time complexity as the 

other particular min-max objectives. 

Some modifications on the lower and upper bounds are expressed to show the 

validity of the similar results for small deviations and the weighted objectives. 

 

Our algorithm solves the min-max mixed-model just-in-time sequencing problem 

with this general objective   and the chain constraints defined above. 
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AN EFFICIENT ALGORITHM 

We consider the demand rates of  models with total 

demand  of all chains. Then we calculate the permissible time windows   

for given target value  for our generalized objective (see, [13]). These time windows 

must be feasible without chains as these constraints were not included for calculating 

them yet. 

 

To   ensure that the target variable  value  B  for the bottleneck  objective  is 

feasible for the super  sequence  to be delivered,  we reduce  min-max-chain 

sequencing  problem  for objective Fm   to a single machine  scheduling  decision  

problem  with release  times, due dates and chain constraints. 

 

Given any bound B for the Fm   problem,  we ask does there exists a feasible 

solution of the single processor scheduling  problem    with 

? 

 

For the problem  the time windows are represented by the intervals 

 calculated as a function of given . The chains are given by 

the subsequences  that may be represented by the following 

graph. 

 

Define a directed graph  with the vertex set . 

There exists an arc in  from  to if the precedence relation 

 is satisfied. 

 

Horn [12] formulated   time algorithm to the problem His 

earliest due date (EDD) rule assigns at any time an available job with the 

smallest due date. 

 

For its use to  one needs to modify the due dates as follows: if job 

 is the immediate predecessor of job  in any chain and  denoted 

by  then the due date  has to be replaced by the modified due date . 

 

We present Algorithm 1 for the Fm problem  (see also, [5, 8]). 

  

Algorithm 1  min-max-Fm-chain-algorithm 
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 Given:  for  and  

   

  
 : 

  

  

 . 

 

Step 1: 

 

 

Step 2:   

  
  
 

Step 3:  [12]. 

 

Output:  
 

The computational time complexity of the algorithm is  Following 

theorem proves the correctness of Algorithm 1. 

 

Theorem 3 Let B be a target value  for  the  objective  function  of min-max-chain 

problem. Then, if the modified EDD algorithm finds an optimal solution with 

Lmax ≤ 0, then min-max-chain-algorithm finds a B-feasible solution to min-max-

chain Fm problem. 

 

Proof. Suppose that be a sequence obtained by min-max-chain-

algorithm such that  That is, each job  is scheduled in the 

proper window and none of the job is delayed.  If s is infeasible to min-max-chain 

problem, then  for some product copy  with 

 and   But this is impossible by the constriction of time 

windows.                                                                                          

An optimal solution to the min-max-Fm problem has to be determined by applying 

binary search of the target value B in the intervals determined by [ 1 3 ] . 

 

One way to give an upper bound to the obtained super sequence is to put given 



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY   

VOL. 7, No. I, SEPTEMBER, 2011, pp  63- 73 

 

 
 

71 

sequences one after another and then calculate the following 

value: 

 

 
 

Upper bounds calculated in this way are better, but the process is more implicit.  

How- ever,  an  explicit upper  bound  obtained, through the study of the 

properties of batch sequences,  on the target value of the super sequence s for the 

absolute deviation chain problem is dmax (1 — rmax ) [8]. 

 

As 1 — rmax is the tight lower bound, he proves the following theorem.  Similar 

results, of course with explicit upper bound, are applicable for the problem with 

objective Fm. 

 

Theorem 4  An  optimal  solution  to the min-max-absolute-chain problem can be 

deter- mined  testing  at most   sequences each with 

complexity   

 

Proof. An optimal solution to the min-max-absolute-chain problem can be 

determined by applying the algorithm binary search in the interval 

  But a feasibility test requires  time.    

               
 

Horn’s [12] algorithm works for the problem  . Therefore, our 

approach is applicable t o  the min-max-Fm problem with precedence 

constraints as well.  The time complexity of the algorithm does not increase. 

 

 

CONCLUSIONS 

A number of non-overlapping sequences in the mixed-model just-in-time production 

systems as chain constraints are added.  We presented a pseudo-polynomial time 

algorithm which finds a minimum sequence  to the maximum d e v i a t i o n  mixed-

model just-in-time sequencing problem Fm . 

 

These results are based on the reduction of mixed-model just-in-time sequencing 

problem to a single machine scheduling problem.  Results of Horn [12] and Khadka 

and Dhamala 13] are applicable for solving our problem. 

 

Our approach has both theoretical as well as practical values.  The min-sum 

problem with such constraints and/or min-max problem with overlapping 

sequences as constraints will be interesting for further research. 

 

ACKNOWLEDGEMENTS 



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY   

VOL. 7, No. I, SEPTEMBER, 2011, pp  63- 73 

 

 
 

72 

The author would like to thank DAAD for the support of research visit at the University 

of Magdeburg, Germany (May-June, 2010). 

 

REFERENCES 

[1]  Boysen N, Fliedner M & Scholl A, Sequencing mixed-model assembly lines: 

Survey, classification and model critique.  European Journal of Operations 

Research 192 (2009) 349. 

 

[2]  Brauner N & Crama Y, The maximum deviation just-in-time scheduling problem. 

Discrete Applied Mathematics 134 (2004) 25. 

 

[3]  Brauner N, Jost V & Kubiak W,  On symmetric Fraenkel’s and small deviations 

conjecture. Les cahiers du Laboratoire Leibniz-IMAG, 54, Grenoble, France, 

2004. 

 

[4]  Corominas A & Moreno N, On the relations between optimal solutions for 

different types of min-sum balanced JIT optimization problems. INFOR 41 

(2003) 333-339. 

 

[5]  Dhamala TN, Optimality of the min-max product rate square deviation product 

rate variation problem with chain constraints, in Proceedings of the 14th 

International Workshop on Multimedia Signal Processing and Transactions, 

Chonbuk National University, South Korea, November 8 (2010) 94. 

 

[6]  Dhamala TN, Khadka SR & Lee MH, A note on bottleneck product rate variation 

problem with square-deviation objective. International Journal of Operations 

Research 7 (2010) 1. 

 

[7]  Dhamala TN & Khadka SR, A review on sequencing approaches for mixed- 

model just-in-time production system. Iranian Journal of Optimization 1 (2009) 

266. 

 

[8]  Dhamala TN, Just-in-time sequencing algorithms for mixed-model production 

systems. The Nepali Mathematical Sciences Report 24 (2005) 25. 

 

[9]  Dhamala TN & Kubiak W, A brief survey of just-in-time sequencing for mixed- 

model systems. International Journal of Operations Research (IJOR) 2 (2005) 1. 

 

[10]  Dhamala TN & Kubiak W, Optimal just-in-time sequences for mixed-model 

multi-level production. Memorial University of Newfoundland (2005). 

 

[11]  Glover F, Maximum matching in a convex bipartite graph. Naval Research 

Logistics Quarterly, 4 (1967) 313. 

 

[12]  Horn WA, Some simple scheduling algorithms.  Naval Research Logistics 

Quarterely 21 (1974) 177. 



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY   

VOL. 7, No. I, SEPTEMBER, 2011, pp  63- 73 

 

 
 

73 

 

[13]  Khadka SR & Dhamala TN, Optimality of the bottleneck product rate variation 

problem with a general objective. Operations Research Letters, under review 

(2010). 

 

[14]  Kotani S, Ito T & Ohno K, Sequencing problem for a mixed-model assembly line 

in the Toyota production system. International Journal of Production Research, 42 

(2004) 4955. 

 

[15]  Kovalyov MY, Kubiak W & Yeomans JS, A computational study of balanced JIT 

optimization algorithms. Information Processing and Operational Research, 39 

(2001) 299. 

 

[16]  Kubiak W, On small deviations conjecture. Bulletin of the Polish Academy of 

Sciences, 51 (2003) 189. 

 

[17]  Miltenburg J, Level schedules for mixed-model assembly lines in just-in-time 

production systems. Management Science, 35 (1989) 192. 

 

[18]  Monden Y, Toyota production systems. (Industrial Engineering and Management 

Press, Norcross, GA, 1983). 

 

[19]  Steiner G & Yeomans S, Optimal level schedules in mixed-model multi- level JIT 

assembly systems with pegging. European Journal of Operational Research, 95 

(1996) 38. 

 

[20] Steiner G & Yeomans S, Level schedules for just in time production processes. 

Management Science, 39 (1993) 728. 

 

 


