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ABSTRACT 
The present paper deals with approximation of a function belonging to the Lip (α, p) class by product 

summability method. Here product of Euler (E,1) summability method and Nörlund (N, pn) method has 

been taken. A new estimate on degree of approximation of a function f belonging to Lip (α, p) class has 

been determined by (E,1) (N, pn) summability of  a Fourier series. 
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Definition 

 Let f be 2-periodic function in L
1
(-, ). The Fourier series associated with f at a point 

x is given by  
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The L
p
 norm is defined by  
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and the degree of approximation En (f) is given by (Zygmund [12]) 
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in term of n, where  Tn(x) is a trigonometric polynomial of degree n. 

 A function Lipf  if  
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and if,2x0for)p,(Lip)x(f   
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If p → ∞, Lip (α, p) class coincides with the Lip α class. 
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The Nörlund means of the sequence {sn} is given by (Hardy [4]) 
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If  nasst N

n , then the sequence {sn} is summable to s by Nörlund method. 

The Euler means (E,1) is given by (Hardy [4]) 

.s
k

n

2

1
E

n

0k

kn

)1(

n 










                (7) 

If  nassE )1(

n , then the sequence {sn} is summable to s  by Euler method. 

The (E,1) transform of the (N, pn) transform define the (E,1)(N, pn) transform of the 

partial sum {sn}of series


0n

nu . The (E,1)(N, pn) means defines a sequence }t{ EN

n  by  

N

k

n

0k
n

EN

n t
k

n

2

1
t 










 = rrk

k

0rk

n

0k
n

sp
P

1

k

n

2

1




 







                                               (8)     



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY   

VOL. 7, No. I, SEPTEMBER, 2011, pp  1-8 

 

 

 3 

If  nasst EN

n , then the  sequence {sn} is said to summable by (E,1)(N, pn) 

method to s. 

Particular cases 

Two particular cases of (E,1)(N, pn) means are: 
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We use the following notations. 
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INTRODUCTION 

The result of Quade [9] has been generalized by several researchers like Chandra [1], 

Khan [5], Mohapatra & Russell [8], Sahney & Rao [10]; but most of their  theorems are 

not satisfied for  α = 1,  p>1. Therefore, this deficiency has provoked to investigate 

degree of   approximation of   functions belonging to Lip (α, p) considering cases 0< α<1 

and α = 1 separately. Some interesting results on Lip (α, p) class have been given by 

Chandra [2], Leindler [6] and Dhakal [3] by Nörlund and matrix method. Here better and 

sharper estimate of )p,(Lipf  than all previously known results in this direction has 

been determined as following:  

 

Theorem. If RR:f  is 2-periodic, Lebesgue integrable on [-, ] and Lip(α, p) class 

function for ,1p,1
p
1   then the degree of approximation of f by (E, 1)(N, pn) means 

of its Fourier series (1) is given by  
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Lemmas 

Following lemmas are needed for the proof of our theorem. 
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Proof of the Theorem 

Following Titchmarsh [11], the n
th

 partial sum sn(x) of the Fourier series is given by  
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The (N, pn) transform of the sequence {sn(x)} is given by  
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This completes proof of the theorem. 

Corollary 

Following corollary can be derived from the main theorem:  

 The degree of approximation of a function f   Lip  by (E, 1)(N, pn) means is given by 
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REMARKS: An independent proof of corollary can be derived along the same line as the 

theorem. 
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