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ABSTRACT 
In this paper, a theorem concerning the degree of approximation of the conjugate of a function 
belonging to W (Lp,  (t)) class by (N, pn) (E, 1) means of its conjugate series of a Fourier 
series has been   proved.   
Subject classification: 42B05, 42B08. 
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INTRODUCTION 

Bernstin (1912), used (C,1) means to obtain the degree of approximation 
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for 0<α<1. Qureshi (1981), first time obtained the degree of approximation of the function 

)x(f
~

i.e., 10,
k
p

P
1O)f(E 1

k

1kn

~

n 











 , by Nörlund means, where )x(f

~
 is the 

conjugate of 2π-periodic function fLip α. Generalizing the  result of Qureshi (1981), many 
interesting results have been proved by various investigators like Qureshi (1982), Lal (2000), 
Lal and Nigam (2001), Rhoades (2002), Mittal et. al. (2005) for functions of various classes 
Lip α, Lip (α, p), Lip (ξ(t), p) and W(Lp,  (t)) by using various summability methods.  
 
Let f be 2-periodic, integrable over (-,) in the sense of Lebesgue, then its Fourier series is 
given by  
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with partial sum Sn(x). 
The conjugate series of the Fourier series (1) given by  
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with partial sum )x(Sn
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We define  
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where NE
nt is (N, pn)(C,1) means of the sequence {Sn}, if  St NE

n   as  n→ ∞, then sequence 
{Sn} is summable by (N, pn)(C,1) method to S. 
The Lp norm is defined by   
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and the degree of approximation En (f) under norm 
p
 is given by (Zygmund, 1959 ) 
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where Tn is a trigonometric polynomial of degree n.  
A function f  Lip  if  
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Also, f  Lip (, p), for 0≤ x ≤ 2, if  
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Given a positive increasing function (t), p  1,  
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 (Rhoades, 2002). 

It is observed that  
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THEOREM 

The purpose of this paper is to obtain the approximation of )x(f
~

, the conjugate of a function  
 
f  W (Lp, (t)) class, by (N, pn) (E, 1) means of conjugate series of a Fourier series. In fact,  
we prove following theorem: 

The degree of approximation of function )x(f
~

, conjugate to 2-periodic, Lebesgue integrable 

in ),(  function f(x) belonging to class W (Lp, (t)), p≥1, by using )x(t
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its conjugate Fourier series (2), is given by 
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provided (t) satisfies the following conditions:  
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uniformly in x, where δ is an arbitrary number with 0 -)-(1 q
1  ,  q is  the conjugate index of 
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 exists in the sense of Lebesgue. 

 
LEMMAS 

Lemma 1: For 
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Lemma 2: If }p{ n is non-negative and non-increasing sequence, then  

for  ba0 ,  t0 and for any n, 
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PROOF OF THE THEOREM 

The n th partial sum )x(S
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n of the series (2) is given by 
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 Applying Hölder’s inequality, condition (5), second mean value theorem for integral and the 
fact that )),t(,L(W)t( p   we have  
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Similarly as above, we have  
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By using (10), (11) & (12), we get, 
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APPLICATIONS 
The following corollaries can be derived from the theorem. 
Corollary 1. If  = 0 and (t) = t, 0 <   ≤ 1, then the   W (Lp, (t)) class reduces to  

Lip (, p) class and the degree of approximation of a function )x(f
~

, conjugate to   2-periodic 
function f  Lip (, p), is given by  
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Corollary 2. If p   in corollary 1, for 0 <   < 1, degree of approximation of a 
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, conjugate to   2-periodic function f  Lip , is given by 

 .
n
1O)x(f)x(tsup)x(f)x(t

~NE

n

~

x

~NE

n

~







 




 

 
ACKNOWLEDGEMENT  
Author wish to express his gratitude to his teacher Prof. Dr. Shyam Lal, Department of 
Mathematics, Banaras Hindu University, Varanasi, India for his valuable suggestions to 
prepare the manuscript of this paper.  

 
REFERENCES 
 

1. Bernstein, S. N. 1912. Sur l’ordre de la meilleure approximation des fonctions 
continues par les polynômes de degré donné,  Mem. Cl. Sci. Acad. Roy. Belg., 4, 1-103. 



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY                                        
VOL. 5, No. II, SEPTEMBER, 2009, pp 30-36. 
 

 36 

2. Jackson, D. 1930. The Theory of Approximation, Amer. Math. Soc. Colloquium 
publication, 11. 

 
3. Lal, Shyam 2000. On the degree of approximation of conjugate of function belonging  

to Weighted W(Lp,(t)) class by matrix summability means of conjugate series of a 
Fourier series, Tamkang J. Math., 31(4), 279-288. 

 
 
4. Lal, Shyam and Nigam, Hare Krishna 2001. Degree of approximation of conjugate of a 

function belonging to Lip ((t), p) class by matrix summability means of conjugate 
Fourier series, Int. J. Math. Math. Sci., 27(9), 555-563. 

 
5. McFadden, Leonard 1942. Absolute Nörlund summability, Duke Math. J., 9, 168-207. 

 
6. Mittal, M. L., Singh, U. and Mishra, V. N.: Approximation of functions (singnals) 

belonging to weighted W(Lp, (t))-class by means of conjugate Fourier series using 
Nörlund Operators,  Varahmihir J. Math. Sci., 5(2) (2005), 631- 640. 

 
 
7. Mittal, M. L., Singh, U., Mishra, V. N., Priti, S. and Mittal, S. S. 2005. Approximation 

of functions (signals) belonging to Lip ((t), p)-class by means of conjugate Fourier 
series using linear operators,  Indian J. Math., 47(2-3), 217-229. 

 
8. Qureshi, K. 1982. On the degree of approximation of functions belonging to the class  

Lip(α, p)  by means of a conjugate series, Indian J. Pure Appl. Math., 13(5), 560-563. 
 

 
9. Qureshi, K. 1981. On the degree of approximation of function belonging to the 

Lipschitz class by means of Conjugate series, Indian J. Pure Appl. Math., 12(9), 1120-
1123. 

 
10. Rhoades, B. E. 2002. On the degree of approximation of the conjugate of a function 

belonging to the Weighted  )t(,LW p  class by matrix means of the conjugate series 
of a Fourier series, Tamkang J. Math., 33(4), 365-370. 

 

11. Zygmund, A. 1959. Trigonometric series, Cambridge University Press. 


