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ABSTRACT

We prove the Parseval's identity for low-dimensional nilpotent Lie groups such as Gs 1, Gs2,
Gs3 and Gss respectively which are important for proving Hardy uncertainty principles type
result.
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INTRODUCTION

Let g be an n-dimensional real nilpotent Lie algebra and let G = exp g be the associated,
connected and simply connected nilpotent Lie group. Let {x, ..., Xa} be a strong Malcev basis

of g through the ascending central series of g. In particular, RX; is contained in the centre of
g. We introduce a norm function on G by setting for

x=exp (X1X1 + ...+ XXp) €G, xjeR

I = (k2 +A +x2)?

The composed map
R'>g—G, (X, ..., %)= ixjxi N exp(ixjxjj
j=1 j=1

is a diffeomorphism and maps Lebesgue measure on R" to Haar measure on G. In this manner we
shall always identify g and sometimes G, as sets with R". Thus measurable (integrable) functions
on G can be viewed as such functions on R".

Let g~ denote the vector space dual of g and {XI,A x;} the basis of g~ which is dual to
{X1, ..., Xpn). Then {x;,A x;} is Jordan-Holder basis for the Coadjoint action of G on g". We

shall identify g~ with R" via the map & = (&, . . . &) — igjx] and on g~ we introduce the
=1

Erag)=Jg

For an operator T in a Hilbert space such that T™ T is a trace class ||T||us will denote the Hilbert
schmidt norm of T.

Euclidean norm relative to the basis {XI,A x;}, that is, Higjx]
j=1
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THREAD LIKE NILPOTENT LIE GROUPS

For n > 3, leg g, be the n-dimenstional real nilpotent Lie algebra with basis Xy, . . ., X, and non
trivial Lie brackets [ X1, Xn-1] = Xn-2, - . ., [Xn, X2] = X1

gnisa(n- 1) step nilpotent and is a semidirect product of RX, and the abelian ideal nf RX;. Note

=

that gs is the Heisenberg Lie algebra. Let G, = exp gn.
For &= El § X € g,, the coadjoint action of Gy, is given by
=0

Ad” (exp (X)) £= X Py (E 1) X],
where, fori<j<n-1,Pj (&, t) is the polynomial in t defined by

P& 1) = :Zl(%,) (1)t & .

-1

The orbit of & is generic with respect to the basis {x;,A ,x;} if and only if & = 0, and the jumping
indices are 2 to n. The cross section X, for the set of generic orbits is given by

X, ={€=(E0& ...,&1,0:& eR, & =0}

For ¢ € g,, let m: denote the ireducible representation of G, associated with &. Then the mapping
& — m is bijection of X, and the set of all generic irreducible representations. Plancherel

measure on G, is supported by these .. Denoting by F the Fourier transform on R™, it follows

that the Hilbert schmidt norm of the operator
e (f), fel'nL? (Gy) is given by,

.0 = JIF(PE ), - pra (& 0). s ? dsdt
The following group of lower dimensions such as Gs, 1, Gs, 2, Gs, 3 and Gs, s etc are found in [8].

PARSEVAL IDENTITY FOR Gs 4
LetG=Gs1 =R’

X1y« ooy X5) (Y1, - - Y5) = (X1 + Y1 + X3Yo + XsYa, X2 + Yo, X3 + Y3, Xa + Y1, X5 + Y5)
and (Xq, . . ., Xs) ™ = (-Xq + XoX3 + XaXs, X2, -Xa, -X4, X5)

For ye R°

., ()OO = I f0aXeXeXaXs) m (X0t XX + XaXs, Xa, X3, -Xa, Xs) & (Y1, ¥2)
= [ /09 exp [2n (-xa + XoXa + XaXs + XoXa + XaY2) &1l ¢ (Y1 + Xa,Y2 + Xs) X

X3—=>X3-Y1, Xs > X5- Y2
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= [ 10, Yo X - Y1, Xa, Xs - ¥2) €Xp [2mi (%1 + %2 (X -y1)

+X4((Xs - Y2) +XaY1 + XaY2) E1] ¢ (Xs, Xs)dX

= [ f0 Yo Xs - Y1, Xa, X5 - ¥2) €XP [271 (X0 + XoXg -XoY1 + XaYs - Xays + XoY1 + XaY2) G

¢ (X3, Xs) dx

= [ O XeXa - Y1,Xe, Xs - Ya) X [-2m1 (X0 - XoX3 - XaYs)Ea] ¢ (xa,Xs)dx
KE (Y1 Y2, X, Xs) = ] (X0, X, X3 - Y1, Xa, X5 - ¥2)
exp [ -2mi (X1&1 - XoXz&1 - XaXsE1)] dXadXo0Xs
= F124 f(&1 -Xa&1, X3 - Y1, - XsE1, X5 - Y2)

[, o= T IKE (2 Yo, Y, %5) dyadlyzxaclxs

= I IFuaa f(B1, - XaEa, Xs = Y1, X, Xs - Yol dysdlyzxsdixs

-1 -1
X3 —> —X;, Xy = —X,
1 1

S

2
1

1 IFa2e f(&, %, Y1, Xs, o)l dysdyatxadxs

Jgxe

AN

RL IF1af (&1, U, Y1, Xs, YQ|2 dy;dy,dxdxs

RL IF1 f(E1, U, y1, W, y2|2 dy:dy.dudw

AN

PARSEVAL'S IDENTITY FOR Gs
LetG=Gs, =R’
(Xl, Ce X5) (yl, . y5) = (Xl + Y1+ XsYs, Xo+ Yo + XsYs, X3+ Y3, Xg + Vs, X5 + y5)

and (Xy, . . ., Xs) ™ = (X1 + XaXs, X2 + XaXs, X3, -Xa, ~X5)
For yeR®

e (DO YY) = RL J(X1, X2, X3, Xa,X5) . . . (-X1 + XaXs, -Xz + XaXs, -Xg, -X4, -X5) ¢ (Y)dX

= [ 100X, X6)eXP [271 (X0 + XoXs + XaY)&1 + (e + XaXs + XaY)& - Xaa] § (¥ + X6)IX

25



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY
VOL. 5, NO. 1. JANUARY, 2009, PP. 23- 30

X5 > X5 -Y

= [ f0aXeXa X X6 - Y) €xp [271 (5 + X3 (%6 - ¥) + XaY)

+ (X2 + Xa(Xs - Y) + XaY)E2 - Xa€a] ¢ (Xs)dX

= [ f0aXeXaXa,Xs - y)exp [2mi[(-X1 - Xa + XaXs + XaY) &1

+ (X2 -XaY + XaXs + XaY)E2 - Xa€a] § (X5)dX
Koo O %) = [/ X X X X - Y) exp [21i0eG - XXs& + Xl -
XaX5EatXaE3) X1 dXo0X30Xs

= Fiz3s (&1, &, - %61, -XsG2 + &4, X5 - Y)

e, (f)"is = RJ.2|Kf1,§2,§4 (v, Xs)rdydxs

= RIQ IF1234f(E1, &, -XsE€1, X5E2 + &4, X5 - Y)|2 dydxs

Xs = — X,

1
1 2
= dydx
e

F1234f(<:11 ‘:21 X5, X;jz + ‘:41;5_11)(5 - y]

1
Yy—=>-Y——X;
1

2

dydx

- 1|2 ] F1234f(<:1,<:2,x5 X;jﬂ +<:4,y]

1

2

dudw

1 wé
= 2 I F124f(<§1,<§sz,—2+§4,uj
& ® &,

PARSEVAL'S IDENTITY FOR Gs3

LetG=Gs3=R’

Xty oy X5) = (Y1, - -+, ¥5) = (X1 + Y1 + XaYs + Xsyo + 1 X2Ya, X2 + Yo + XsYa, X3 + Y3,Xa + Ya,X5 + Y5)
2

- 1
(X1, + o X5) ™" = (X + XoXs + XaXq - §x4x§, - Xo + XaXs, - X3, - X4, - Xs5)

For ye R?
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1
T, (f)d) (y) = R-l; f(X) T, [_ Xy + X, X5 + XX, _EX4X§ —X,+ X4X51_X31_X41_X5j ¢ (yl, yz)dX
. 1
= R-l; f(X)EXp |:2TCI[— Xy + XX + X3X41_EX4X§ XXy XY — (_Xz + X4X5)y2

1
- Ex4y§j:|¢(y1 X3, Y, + Xs)

Xy = Xy =Y, Xs = X5 — Y,
= Rj (X1, X2, X3, -Y1,X4,X5 - Y2)eXp [27i(-X1 + XoXs + (X3 - Y1) X4 - %th
(% - Y2 - (40 - V)X - XY - (% + X (X5 = Y)Y - 5% y2 1 (o Xe)dx
= st F(X1,X2,X3 - Y1,X4,X5 - Y2)eXP [27ti(-X1 + XoX5 + X3X4 - Y1 X4
_%x4(x5 - Vo) XaXa + Xa¥1 - XaY1 + XoY2 - XaYa(Xs - Y) - %X‘l)’ﬁ]&ld’ (X3, X5)dx
= RI F(X1,X2,X3 = Y1,Xa,X5 - Y2)exXp [27i (-X1 + X2 (X5 + Y2) - Y1Xa - %th x2)&1] ¢ (Xs, Xs)dX

KE, (Y1,Y2,X3,Xs) = RL J(XaXa X3 - YiXa,Xs - Y2)exp [(-2mi (Xi&1 - Xe&1 (XstY2) + Xa(yrt %Xé)ﬁl]

dx,dx,dx4

= F124f(<‘;1,—<§1(x5 + yz)vxs - yl’[yl +%ng‘glvxs - yz]

"ngl (f)||2Hs = | Kgl (ylvy11X31X5|2dy1dy2dX3dX5

R4

2

) dydy.0dxsdxs

1
F124(‘:11_‘:1(X5 + yl)’ X3— yl’[yl + Exgj‘:v Xg— yz]

X3=>X3t Y, Xs > X5+ Y2

= F\;[A |F124f|[‘211_‘21(xs +2Y,), %3, (Y, + %(Xs + yz)z)‘glv ij |2 dyldyZdX3dX5

Yi—>VY1- %(Xs +y,)?

= RL |F124f (&1, - E1(Xs5 + 2V2), X3, Y1§1,X5)|2 dy1dy,0xsdxs
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1 1
=Y, _ij Y1 —> (:_yl

N i[
Y2 > 1

&

2_22 RL |F124f(§1,YZ,X3Y1,X5)|2dy1dy2dX3dX5

2—22 RI |f1(E1,,X3,0,%5)[dydvdxzdxs.

PARSEVAL'S IDENTITY FOR Gss
LetG = G515 = R5

1 1
26 O Y= (K Y+ 00+ XY, Y,

1
+X5Ys +Exgy4vx3 Y3+ XY Xy +Y4 Xg +y5j

-1 1 P 3 1 2
(X1, .0y X5)" = [— Xy + XpXg == XsXs + X X=Xy + XX == XyXs X+ XyXs, XX

ForyeR

_ 1 1 1
T .o, (NO(Y) = RL J(X1, X2, X3, Xa,X5) 7, . . [— X, + X,Xq _EX3X§ +€x4x§,—x2 + X Xs —Ex4x§,

= X, + X X5, =X, =X5 ) § (y)dXx

= RL f(x) exp {Zni{— X, + X, Xq —%x3x§ +%x4x§ —[— X, + X Xg —%x4x§j

y+ %(_Xs + )(4)(5)y2 + %X4y3j‘g1 + (_Xs + X, X5 + X4y)‘gs -X,&, }]d) (y+X5)dX
X5 —> X5 - Y

. 1
= [ f0aXXs XX - Y)exp {21“[— X, + XX = X,y _Exa(X§ +y? - 2x.y)
1 3 1 2 1
+€X4 (Xs _y) —| Xy + XX —ng—EX4(X5 _y) h +E(_X3 + Xy X5 _X4y)
1
y2 + €X4y3}§1 + (_Xs + X, Xg =X,y + X4Y)§3 - X4§4)H¢(Xs)dx

= | S0 XeXaXeXs - Y) XD {m[— K XK =X (X~ Y) 4 205, -9) + yZJ

28



KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY
VOL. 5, NO. 1. JANUARY, 2009, PP. 23- 30

=X, {(Xs - Y)3 + S(Xs - y)zy + S(Xs - y)y2 + ya}al - (Xa - X4X5)‘§3 - X4‘g4j:| ¢ (XS)dX
= st J(X1,%2,X3,X4, X5 - Y)exp [~ Zni[xl — X,X5 + % Xy(Xs = Y +Y)°
- %X4(X5 -yt y)gj‘gl + (X3 - X4X5)‘§3 + X4<§4]¢(X5)dx

= I (X0, Xa %, % - y)exp

|:_ Zni[(xl — XX+ %Xaxsf - %X4X§)§1 + (X3 - X4X5)§3 + X4§4]:|¢(X5)dx

KL ez (ViXs) = RI J(X1,X2,X3,Xa,X5-Y) €Xp - Zn{(xl — X,Xg+ %xgxg - %x4x§]§l
+ (X5 = X, Xg )5 + X,E, ]} AXq OX20X30X4

1 1
= F1234f[<§1,—X5<§1,EX§<§1 + ‘gav_gxg‘gv_xs‘ga +&4, X5 — yj

"%,53,54 (f)"i18 = Rjz|Kf1,a2,a4 (v, ijzdydxs

2
1 1
- J. 1234 [‘:1 5‘:115)(2‘:1"'aav_gxg‘:l_xs‘:a"":mxs_yj dde5
Xg —> —= X
1
2
1 1xg Xs  XeXy -1
— | |F,uf — dyd
|§1|RI o (él 3T F°36<21 e % y] ydx
1
Y=>-Y——Xg
1
:if €. X 1x +& ——+ +&,.Y 2dydx
|<:1|R 1234 10 2 ‘:1 S ‘:1 ‘:1 41 5
2
-1 1w 1w’ wg
= J|Ff AL ] dyd
|<‘,51|R-[2 134 (‘21 2 “’51 +&, 6 “’51 £, +&4, ] yaw
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