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ABSTRACT 
This paper presents the use of  Matlab symbolic computation technique to model and 
simulate self excited induction generator. In this technique, the computer itself carries out 
both the tedious job of deriving the complex coefficients of the polynomial equations and 
solving them. Hence the modeling and programming becomes very simple yet versatile. 
Good agreement between the results obtained from the conventional method and that 
obtained using symbolic computation validates the effectiveness of this new technique. 
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INTRODUCTION 
Self excited induction generators (SEIG) have become very popular in micro and pico hydro 
systems of Nepal. This is mainly because they are robust, easily available and inexpensive. 
They require little maintenance and hence are very much suitable for remote area 
applications.  

Both the frequency and magnetizing reactance of SEIG vary with load in order to maintain an 
exact balance of active and reactive power across the air gap. Hence, it is a crucial step in the 
steady state analysis of a SEIG to determine the per unit frequency F and the magnetizing 
reactance Xm for given machine parameters, speed, excitation capacitance and load 
impedance [1]. The balance of active and reactive power across the air gap can be realized by 
equating the real and imaginary terms of total admittances, connected across the terminal 
representing air gap, respectively to zero. 

The usual practice is to derive the complex coefficients of the non-linear equations manually 
and solve them using numerical methods. The mathematical manipulations required are 
tedious, time consuming and liable to human error. It requires tremendous human effort for 
accurate programming and debugging. The model lacks flexibility as the coefficients are 
valid only for a given circuit configuration. Inclusion of the core loss resistance or load 
inductance will increase the order of the equations. 

The above shortcomings can be overcome by the use of symbolic computation technique in 
Matlab. The symbolic computation technique allows one to solve the SEIG governing 
equations without having to derive the complex coefficients of polynomial equations 
manually. A single command ‘solve’ can be used to solve multiple equations and the user 
does not need to bother about the numerical methods involved. This makes the modeling and 
simulation of SEIG very simple yet versatile. Good agreement between the results obtained 
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from the conventional method and that obtained using symbolic computation validates the 
effectiveness of this new technique. 

Steady state modeling of self excited induction generator 
Most of the steady state models of SEIG developed by different researchers are based on per 
phase equivalent circuit. These models use the following two basic methods; i) Loop 
impedance method and ii) Nodal admittance method. The steady state model based on nodal 
admittance method and used in [2] is presented here. This model makes assumptions that the 
load is purely resistive, core loss component is neglected and the machine parameters (except 
for magnetizing reactance) remain constant.  

Figure 1. Per phase equivalent circuit of SEIG 

Figure 1. above shows  the per phase equivalent circuit of SEIG, where the different symbols 
represent: 

Rs, RR, RL → p.u. stator, rotor and load resistances respectively 
Xs, XR, XM, XC → p.u stator, rotor, magnetizing and excitation 

reactances respectively 
Ys, YR, YM, YL , YC → p.u stator, rotor, magnetizing, load and excitation 

admittances respectively. 
F → p.u.frequency 
v → p.u. rotor speed 
Is, IR, IL → p.u. stator, rotor and load currents respectively 
Eg, Vt → p.u. air gap and load terminal voltage respectively 

The total current at node ‘a’ in the above figure can be written as 

 E1(Y1+YM+YR) = 0    ……………………………..(1) 
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Under self-excitation E1 ≠ 0, therefore sum of total admittance connected across the air gap 
must be zero i.e. 

 Y1+YM+YR = 0    ……………………………..(3) 

As the admittances are complex quantities, the real and imaginary parts of equation 3 can be 
equated to zero. 

Therefore, 

 Real(Y1+YM+YR) = 0    ……………………………..(4) 

 Imag(Y1+YM+YR) = 0    ……………………………..(5) 

For given value of shaft speed, generator parameters, excitation capacitance and load 
impedance, solution of equation 4 gives the p.u. output frequency F. The corresponding value 
of magnetizing reactance XM can then be found from equation 5 using the value of F obtained 
from 4. After determining the values of F and XM, the air gap voltage Eg can be determined 
using the experimentally obtained magnetization curve, which relates Eg/F and XM. Now, 
different quantities can be calculated using the following relations describing figure 1. 
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Conventional solution methods 
In the conventional methods, complex coefficients of equations 4 and 5 are manually derived 
and then solved using numerical methods. In the above example, equations 4 and 5 can be 
simplified to equations 6 and 7 respectively. 
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Disadvantages of conventional solution methods 
Although the conventional methods are effective in simulating the SEIG performance, they 
have common disadvantages as correctly pointed out by T.F. Chan in [1] and [3]. They can 
be listed out as: 

1. All the coefficients of the non-linear equations or a higher order polynomial need to 
be derived manually. The mathematical manipulations are tedious, time-consuming 
and prone to human errors. 

2. The expressions for the coefficients are very long and complicated, which require 
tremendous human effort for accurate programming and debugging. 
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3. The model lacks flexibility as the coefficients are valid only for a given circuit 
configuration. For example, inclusion of the core-loss resistance or the addition of 
compensation capacitive reactance will change the order of the equations . 

Many researchers have proposed different techniques to tackle these problems recently [1-5]. 
However they still require some degree of manual manipulation of the mathematical 
equations before these techniques are applied. This paper proposes a novel technique using 
MATLAB symbolic computation, which eliminates all the above problems.  

Symbolic computation in Matlab  
MATLAB can compute on symbolic variables just as on constants. This exempts one from 
the tedious job of manual manipulation of the complex equations to obtain the final two 
equations 7 and 8. It can also solve several simultaneous equations hence the user does not 
need to use numerical methods to solve the complex equations 7 and 8 obtained after the 
manipulation. Since MATLAB performs both the jobs, steady state modeling and simulation 
of SEIG becomes very simple and effective [6]. Few simple examples below illustrate the 
symbolic computation that can be done in MATLAB (version 6.5 or above). 

Command Returns

syms a b  creates two symbolic variables a & b.  

 x = (a + b)^2  x = (a + b)2

x = expand(x)   x = a2 + 2ab + b2

y = (a - b)^2  y = (a - b)2

y = expand(y)   y= a2 - 2ab + b2

z = x^2 + y^2  z = (a2 + 2ab + b2)2+(a2 - 2ab + b2)2

z = simple (z) z = 2a4 + 12a2b2 + 2b4

Equation 3 can be written down in the similar fashion.  

Similarly, the following commands can be used to solve the Z for a and b if the Z happens to 
be a complex quantity which is true for equation 3.  

Command Returns 

zreal  = real(z)  
- Equates real terms of Z to zero. 

- assigns the equation name as ‘zreal’. 

zimag = imag(z)  
- Equates imaginary terms of Z to zero. 

- Assigns the equation name as ‘zimag’. 
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[a,b] = solve( zreal, zimag)  Solves zreal and zimag for a and b 

a = double(a) 

b = double(b) 
Returns the numeric values of a and b 

In this way equation 3 can be solved directly using Matlab Symbolic Computation technique. 
This exempts one from having to manually derive equations 7 and 8 and using numerical 
methods to solve them. 

 
RESULTS AND DISCUSSIONS 
In order to verify the validity of the new technique the generator equivalent circuit used in [2] 
was simulated using Matlab symbolic computation and the results were compared  with the 
one obtained from the conventional method. The SEIG used for this purpose is a 3-phase, 4-
pole, 60 Hz, 1 kW, 380V, 2.27 A, Y-connected squirrel cage induction machine whose per 
phase equivalent circuit parameters in pu are: 

And the magnetization curve is represented mathematically as 
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The voltage regulation curve of the SEIG for different loading at constant speed (rated) 
from both the methods are plotted in the figure below. 
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Figure 2. Voltage regulation curve of SEIG 

From the figure 2, it can be seen that the results obtained using the symbolic computation 
technique is in good agreement with that obtained from the conventional method. It also 
demonstrates the effect of adding a core loss component to the SEIG equivalent circuit. 
While the effect of core loss can be significant for more accurate analysis, it cannot be 
included in the conventional method without significantly increasing the complexity in the 
mathematical manipulation required. On the other hand it can be included in the symbolic 
computation technique with much ease. 
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CONCLUSION  
From the above results it can be concluded that the Matlab Symbolic computation technique 
is very effective for the simulation of SEIG. This technique has the advantage that there is no 
need to manually derive the complex coefficients of the polynomial equations. It also 
exempts one from using complex numerical methods to solve the polynomial equations. 
Modeling becomes very simple yet versatile. Core loss and other component can be included 
easily. The programming and debugging become very easy. 
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