Kathmandu University

Journal of Science, Engineering and Technology

Does Mccutcheon's mortality polynomial matrix actually account for mortality decline at ten years?

Ogungbenle Gbenga Michael*

Department of Actuarial Science, Faculty of Management Sciences, University of Jos, Nigeria.

Abstract

This paper intends to employ a non-parametric technique as an alternative technique of modelling and estimating the instantaneous mortality rate intensities which serves as the underlying basis in modeling the distribution of future lifetime. It relies heavily on the analytic properties of life table survival functions l_x . The specific objectives of the study are (i) to derive models for the force of mortality using polynomial function (ii) to derive the survival function (iii) to detect the age at which mortality actually declines and (iv) estimate the curve of death. Computational evidence from our results confirms that in the models 1-3, the mortality intensity μ_x and the curve of death $\mu_x l_x$ are not both defined within the age band $0 \le x \le 2$. The implication is that the infant mortality cannot be captured and the model is not admissible within this interval. Furthermore, it is also observed that $\mu_x = \mu$ is constant within the interval $2 \le x \le 9$ and mortality declines at age x=10. Consequently, there is a visible improvement in the care of infants which accounts for the decline in infant mortality.

In model 4 since $l_x < l_{(x-1)} < l_{(x-2)} < l_{(x-3)} < l_{(x-4)} < l_{(x-5)} < l_{(x-6)}$, it then becomes apparent that $\mu_x < 0$. The fact that the force of mortality becomes negative represents a phantom detected from the McCutcheon's mortality matrix.

Keywords: Survival function; Instantaneous mortality; Intensities; Life table; Mortality matrix; Phantom

1. Introduction

Interpolation defines approximation of a value in between two interval values over a given set of values (Das & Chakrabarty 2016a) [1]. In the case of survival data points, interpolation describes a process of estimating intermediate value of such survival function from a set of its given values. According to Das and Chakrabarty (2016b) [2], polynomial interpolation is a technique of computing values between known data survival values. We infer from Neil (1979) [3] and Das and Chakrabarty (2016b) [2], that in fractional age at death problems where survival data has a gap, but data is given on either side of the gap or at a few definite points within the gap, interpolation permits for computation of the values within the gap. This partly accounts for the concept of the fractional distribution of deaths in mortality analysis. Where mortality tables is dependent on fractional age at death, the actuarial determination of the survival function l_x at fractional age when required cannot be achieved unless by linear interpolation (Dickson, Hardy, & Waters, 2013) [4]. Consequently, the problem is to derive the approximate values instead of their real analytical values using tools of approximation. Functional parsimonious parametric mortality models have been developed allowing actuaries to determine risk of uncertainty connected with mortality intensities. As a result of the direct application of these models on mortality functions depending on age, actuaries have observed that mortality rates could likely yield consequential reaction to any change in demographic conditions. According to Putra, Fitriyati and Mahmudi (2019) [5], in actuarial statistics, computing the curve of death in the life tables one of which is mortality rate intensities has constituted hydraheaded problems particularly where relevant survival data is not

available to model the intensity function analytically. In Neil (1997)

^{[3],} it is viewed that when survival curve l_x is measured at differing ages and the underlying mathematical expression is not available, then μ_x can only be obtained by approximation. Following Neil (1997) [3], Rabbi and Karmaker (2013) [6], the problem of estimating death rate μ_x at any given instant appears very often in mortality statistics. Neil (1997) [3], Kovacheva (2017) [7], Siswono, Azmi and Syaifudin (2021) [8] argue further that if l_x denotes expected number of lives surviving to age x and μ_x is the death rate at an instant, then it is feasible to obtain the value of μ_x analytically either from the first order ordinary differential equation described by $\mu_x l_x = -(dl_x)/dx$ or if $l_{(x+t)}$ is functionally expressed as a convergent series polynomial function. In either case, an analytical framework for establishing the functional relationship between the number of lives l_x expected to survive to age x and instantaneous rate of mortality is derived Neil (1997) [3]. Furthermore, in order to justify the motives for invoking instantaneous rate of change, we can change time in steps. The issue is to estimate at an instant using Taylor's series expansion under an assumption that l_x is a convergent series polynomial function by interpolation at the commencement of the mortality table. Consequently, μ_x can now be computed from the numerical point of view by invoking limiting processes so that inference can be drawn about the probability of death occurring in a defined interval of time Neil (1997) [3]. The first order differential equation above could also be employed to estimate the transition probabilities in a Markov process in a two state decrement model given the transition intensities.

^{*}Corresponding author. Email: moyosiolorun@gmail.com

Theorem 1. Let the minimum point of mortality μ_x be n and suppose the mortality in the age interval 0<x<1 can be approximated by

$$\int_{0}^{1} K_{1}r_{1}e^{(r_{1}x)} + K_{2}r_{2}e^{(r_{2}x)}dx \tag{1}$$

Then (i) $n = \frac{1}{(r_2 - r_1)} \log e^{\frac{r_1(2 - e^{(r_2)})}{r_2(2 - e^{(r_1)})}}$ (ii) $\int_0^1 K_1 r_1 e^{(r_1 x)} + K_2 r_2 e^{(r_2 x)} dx$ $\rightarrow K_1 \left[e^{(r_1)} - 1 + \frac{(e^{(r_1)} - 2)}{(2 - e^{(r_2)})} e^{(r_2)} - \frac{(e^{(r_1)} - 2)}{(2 - e^{(r_2)})} \right]$

Proof. The mortality interpretation for the rate of change of sickness Sis given as

$$S'(x) = dS/dx = \alpha S - \beta S + \theta R$$
(2)

The mortality interpretation for the rate of change of recovery as age increases with probability β if the insured life was sick, recovers and decreases by probability θ if the insured life was healthy and becomes sick is given as:

$$R'(x) = dR/dx = \beta S - \theta R \tag{3}$$

The matrix of co-efficient is:

$$M = \begin{pmatrix} \alpha - \beta & \theta \\ \beta & -\theta \end{pmatrix} \begin{pmatrix} S \\ R \end{pmatrix}$$
(4)

$$\frac{d}{dx}\mu(x) = K_1 r_1 e^{(r_1 x)} + K_2 r_2 e^{(r_2 x)}$$
(5)

where $r_1 \mbox{ and } r_2$ are the eigenvalues corresponding to the matrix of co- efficient.

with boundary condition:

l

$$u'(n) = 0$$

$$0 = \int_0^1 K_1 r_1 e^{(r_1 x)} + K_2 r_2 e^{(r_2 x)} dx$$
(6)

$$u'(n) = K_1 r_1 e^{(r_1 n)} + K_2 r_2 e^{(r_2 n)} = 0$$
 (7)

$$K_1 r_1 e^{(r_1 n)} = -K_2 r_2 e^{(r_2 n)}$$
(8)

$$K_1 = \frac{-K_2 r_2 e^{(r_2 - r_1)n}}{r_1} \tag{9}$$

$$\int_0^1 K_1 r_1 e^{r_1 x} + K_2 r_2 e^{r_2 x} dx = K_1 + K_2 = \mu(0) \quad (10)$$

$$[K_1 e^{(r_1 x)} + K_2 e^{(r_2 x)}]_0^1 = K_1 + K_2$$
(11)

$$K_1 e^{(r_1)} + K_2 e^{(r_2)} - K_1 - K_2 = K_1 + K_2$$
 (12)

$$K_1 e^{(r_1)} - 2K_1 = 2K_2 - K_2 e^{(r_2)}$$
(13)

$$\frac{-(e^{(r_1)}-2)K_2r_2e^{(r_2-r_1)n)}}{r_1} = (2-e^{(r_2)})K_2 \quad (14)$$

$$\frac{(2-e^{(r_1)})r_2e^{(r_2-r_1)n)}}{r_1} = (2-e^{(r_2)})$$
(15)

$$e^{(r_2-r_1)n} = \frac{r_1(2-e^{(r_2)})}{r_2(2-e^{(r_1)})}$$
 (16)

$$n = \frac{1}{(r_2 - r_1)} \log_e \left[\frac{r_1(2 - e^{(r_2)})}{r_2(2 - e^{(r_1)})} \right]$$
(17)

But in (17),

$$n = \frac{1}{(r_2 - r_1)} log_e \left[\frac{-r_1 K_1}{r_2 K_2} \right]$$
(18)

$$\log_e \left[\frac{r_1(2 - e^{r_2})}{r_2(2 - e^{r_1})} \right] = \log_e \left[\frac{-r_1 K_1}{r_2 K_2} \right] \Rightarrow K_2 = \left[\frac{(e^{r_1} - 2) K_1}{(2 - e^{r_2})} \right]$$
(19)

 $K_2 = \left[\frac{(e^{r_1}-2)K_1}{(2-e^{r_2})}\right]$ substituting K_2 in (1), the result in (ii) follows

$$K_{1} \int_{0}^{1} (r_{1}e^{(r_{1}x)} + \frac{e^{(r_{1})} - 2}{2 - e^{(r_{2})}} * r_{2}e^{(r_{2}x)})dx$$

= $K_{1} \left(e^{(r_{1})} - 1 + \frac{e^{(r_{1})} - 2}{2 - e^{(r_{2})}} e^{(r_{2})} - \frac{e^{(r_{1})} - 2}{2 - e^{(r_{2})}} \right)$ (20)

f

2. Materials and methods

The McCutcheon(1983) [9] applied the polynomial

$$\begin{split} \tilde{c}(x) &= (x - x_1)(x - x_2)...(x - x_(k - 1))(x - x_(k + 1))...(x - x_m) \\ &= \prod_{\substack{R=1\\R \neq k}}^{m} (x - x_R) \\ &= R \neq k \end{split}$$

to develop a general matrix of coefficients C_{ij} called mortality matrices. From our observation, the assumption is to show that mortality models can alternatively be constructed through different orders of polynomial. The contribution of this paper is anchored on the arguments presented below. The general mortality matrix is being decomposed into 4matrix models and tested to advance evidences of a decline in mortality at 10. This polynomial matrix technique is conveniently extended to an arbitrary number of age terms. The number of age terms in the mortality model is hence chosen with reference to the data instead of being specified in advance. A major importance over this polynomial technique is that the deformation of the age dependent functions are chosen to maximize the estimation and modelling to the data such that the polynomial term employs the maximum amount of information from the mortality data. The polynomial technique seems more computationally flexible because it can be employed over diverse range of mortality data. Since parametric age dependent functions are only adequate for a restricted age bound, the polynomial technique have been applied over the full age range. The polynomial method avoids the subjective judgement in formulating the mortality models as terms are constructed to maximize the fit to the mortality data. Parametric models parsimoniously specifies the governing distribution assumptions of mortality model and the techniques applied in estimating mortalities using data. Parsimonious age dependent functions are only applicable over limited age ranges. Although this represents an edge in permitting higher level of interpretation with respect to demographic relevance, it explains

that the models with parametric age functions are usually not adequate over the full age range. The nature and the mathematical behaviour of parsimonious parametric mortality models have developed in complexity. However, the parsimonious parametric models especially the generalized Makeham's class have not provided actuarial evidence of any decline in mortality at10. The polynomial mortality has been introduced to evince evidence that the mortality computation functionally depends on the number of coefficients which varies with the order of the polynomials and this is meant to prove the hypothesis of mortality decline and then generate better mortality rates when compared with the parsimoniously parametric models. The essence of polynomial modelling is to provide a trade-off between the cardinality of parameters needed to generate good estimates of mortality rates such that as the order of the polynomial grows, the parameters required correspondingly increases and consequently generates the targeted estimates approaching the true mortality rates. This mortality modelling will contribute to the Nigerian population dynamics as crucial to the field of Nigerian demographic statistics and health care planning. Furthermore, this will be of good use as Nigeria has not developed any mortality tables for life insurance underwriting but continues to depend on European mortality tables for underwriting purposes.

2.1. Model 1

Let α be arbitrary age McCutcheon (1983) [9] defines

$$\mu_{\alpha+i} = \frac{-\sum_{j=1}^{n} c_{ij} l_{\alpha+j}}{l_{\alpha+i}}$$
(21)

$$\mathbf{i=1,2,3,4,\dots} \text{ where } c_{ij} = \left(\begin{array}{cccccc} -147 & 360 & -450 & 400 & -225 & 72 & -10 \\ -10 & -77 & 150 & -100 & 50 & -15 & -2 \\ 2 & -24 & -35 & 80 & -30 & 8 & -1 \\ -1 & 9 & -45 & 0 & 45 & -9 & 1 \end{array} \right) \text{ defines the mortality matrix.}$$

If n = 7, i = 4, then $\alpha = x - 4$ in Eq. (21)

$$\mu_{x-4+4} = \frac{-\sum_{j=1}^{7} c_{4j} l_{x-4+j}}{l_{x-4+j}} \tag{22}$$

$$\mu_x = \frac{-\sum_{j=1}^7 c_{4j} l_{x-4+j}}{l_x} \tag{23}$$

$$\mu_x = \frac{-1}{l_x} [c_{4,1}l_{(x-3)} + c_{4,2}l_{(x-2)} + c_{4,3}l_{(x-1)} + c_{4,4}l_x + c_{4,5}l_{(x+1)} + c_{4,6}l_{(x+2)} + c_{4,7}l_{(x+3)}]$$
(24)

$$\mu_x = \frac{1}{60l_x} \left[-l_{(x-3)} + 9l_{(x-2)} - 45l_{(x-1)} + 0 \times l_x + 45l_{(x+1)} - 9l_{(x+2)} + 1 \times l_{(x+3)} \right]$$
(25)

$$\mu_x \frac{1}{60l_x} [l_{(x-3)} - 9l_{(x-2)} + 45l_{(x-1)} - 45l_{(x+1)} + 9l_{(x+2)} - l_{(x+3)}]$$
(26)

2.2. Model 2

$n=7, i=3, \alpha=x-3$

$$\mu_{\alpha+i} = \frac{-\sum_{j=1}^{n} c_{ij} l_{\alpha+j}}{l_{\alpha+i}} \tag{27}$$

$$\mu_{x-3+3} = \frac{-\sum_{j=1}^{l} c_{3j} l_{x-3+j}}{l_{x-3+3}} \tag{28}$$

$$\mu_x = \frac{-\sum_{j=1}^7 c_{3j} l_{x-3+j}}{l_x} \tag{29}$$

$$\mu_x = \frac{-1}{l_x} [c_{3,1}l_{(x-2)} + c_{3,2}l_{(x-1)} + c_{3,3}l_{(x)} + c_{3,4}l_{x+1} + c_{3,5}l_{(x+2)} + c_{3,6}l_{(x+3)} + c_{3,7}l_{(x+4)}]$$

$$\mu_x = \frac{-1}{l_x} [c_{3,1}l_{(x-2)} + c_{3,2}l_{(x-1)} + c_{3,3}l_{(x)} + c_{3,4}l_{x+1} + c_{3,5}l_{(x+2)} + c_{3,6}l_{(x+3)} + c_{3,7}l_{(x+4)}]$$

$$(30)$$

$$\mu_x = \frac{1}{60l_x} \left[-2l_{(x-2)} + 24l_{(x-1)} + 35 \times l_x - 80l_{(x+1)} + 30l_{(x+2)} - 8 \times l_{(x+3)} + l_{x+4} \right]$$
(32)

 $n = 7, i = 2, \alpha = x - 2$

$$\mu_{\alpha+i} = \frac{-\sum_{j=1}^{n} c_{ij} l_{\alpha+j}}{l_{\alpha+i}} \tag{33}$$

$$\mu_{x-2+2} = \frac{-\sum_{j=1}^{7} c_{2j} l_{x-2+j}}{l_{x-2+2}}$$
(34)

$$\mu_x = \frac{-\sum_{j=1}^{r} c_{2j} l_{x-2+j}}{l_x} \tag{35}$$

$$\mu_x = \frac{-1}{l_x} [c_{2,1}l_{(x-1)} + c_{2,2}l_x + c_{2,3}l_{(x+1)} + c_{2,4}l_{(x+2)} + c_{2,5}l_{(x+3)} + c_{2,6}xl_{(x+4)} + c_{2,7}l_{(x+5)}]$$
(36)

$$\mu_x = \frac{-1}{60l_x} \left[-10l_{(x-1)} - 77l_x + 150l_{(x+1)} - 100l_{(x+2)} + 50l_{(x+3)} - 15l_{(x+4)} + 2l_{(x+5)} \right]$$
(37)

$$\mu_x = \frac{1}{60l_x} \left[10l_{(x-1)} + 77l_x - 150l_{(x+1)} + 100l_{(x+2)} - 50l_{(x+3)} + 15l_{(x+4)} - 2l_{(x+5)} \right]$$
(38)

2.4. Model 4

Theorem 2. $\mu_x = \frac{1}{60l_x} [147l_x - 360l_{(x-1)} + 450l_{(x-2)} - 400l_{(x-3)} + 225l_{(x-4)} - 72l_{(x-5)} + 10l_{(x-6)}]$ Given that then, $\mu_x < 0$ Proof.

$n=7, i=1, \alpha=x-1$

$$\mu_{\alpha+i} = \frac{-\sum_{j=1}^{n} c_{ij} l_{\alpha+j}}{l_{\alpha+i}}$$
(39)

$$\mu_{x-1+1} = \frac{-\sum_{j=1}^{7} c_{1j} l_{x-1+j}}{l_{x-1+1}} \tag{40}$$

$$\mu_x = \frac{-\sum_{j=1}^7 c_{1j} l_{x-1+j}}{l_x} \tag{41}$$

$$\mu_x = \frac{-1}{l_x} [c_{1,1}l_x + c_{1,2}l_{(x-1)} + c_{1,3}l_{(x-2)} + c_{1,4}l_{(x-3)} + c_{1,5}l_{(x-4)} + c_{1,6}l_{(x-5)} + c_{1,7}l_{(x-6)}]$$
(42)

$$\mu_x = \frac{1}{60l_x} \left[147l_x - 360l_{(x-1)} + 450l_{(x-2)} - 400l_{(x-3)} + 225l_{(x-4)} - 72l_{(x-5)} + 10l_{(x-6)} \right]$$
(43)

Observe that,

$$l_x < l_{(x-1)} < l_{(x-2)} < l_{(x-3)} < l_{(x-4)} < l_{(x-5)} < l_{(x-6)}$$
(44)

Consequently, $\mu_x < 0$ Where, $l_x = \int_0^\infty l_{x+\xi} \mu_{x+\xi} d\xi$ Q.E.D

3. Data presentation and analysis

The tables in the page 5-6-7 show the data for model 1, 2 and 3 respectively.

4. Discussion of results

In table 1, the mortality intensity μ_x and the curve of death $\mu_x l_x$ are not both defined within the restricted age band $0 \le x \le 2$ and consequently, the intensities μ_2 , μ_1 and μ_0 cannot be captured. At adult ages, the risk of ageing will escalate and the cause of death will either increase at higher degree of intensity or even cause severe ageing as the force of mortality increases. Furthermore, $\mu_x = \mu$ is constant within the interval $3 \le x \le 9$. In this interval, this constant force of mortality can be observed from the survival probability $\theta p_x = e^{-\int_0^{\theta} \mu dy} = e^{-\mu\theta}$ and corresponds to the exponential failure distribution. Under this constant force assumption, the probability that a life survives to age $\theta + x$ within the age band $3 \le x \le 9$ is independent of x. This assumption of the constant $\mu_x = \mu$ may result in a step function for the force of mortality over successive years of age. The intensity first declines at

agex = 10 and the reason is that there is a local minimum of mortality in the neighborhood of x = 10. At some other pointsy, the intensities oscillates. From the theorem 1 above, n=10years. This condition improves in table 2 where the mortality intensity μ_x and the curve of death $\mu_x l_x$ are not both defined within the restricted age band $0 \le x \le 1$. Furthermore, this implies that the death intensities μ_1 and μ_0 cannot be admissible. However, $\mu_x = \mu$ is constant within the interval $2 \le x \le 8$ but slightly increases at 9 and decreases at age x=10. Consequently, this may be as a result of a higher level of health care or a healthy lifestyle and also a better environment. In table 3, there is no age where the mortality intensities are constant. Although, the mortality intensity μ_x and the curve of death $\mu_x l_x$ are not both defined at age x = 0, it is constant in the age interval $1 \le x \le 6$. However, it declines at both ages x = 8 and x = 10. In the three cases, it is clear that the estimation of μ_x is by far a difficult problem where part of the difficulty is the computation of μ_0 at integral ages when the only information given is l_x Since μ_x usually varies rapidly in the interval $0 \le x \le 1$, there may not be a universally acceptable measure of μ_0 . Although, a major advantage of models 1-3 over other numerical methods involving $l_{(-1)}$ is the flexibility to obtain a rough estimate value for μ_0 , the point of singularity is reason why $\mu_{74} < 0$ in table 3.

Table 1: Model 1

x	l_x	μ_x	$l_x \mu_x$									
0	1000000	-	_	<u>x</u>		μ_x	$l_x \mu_x$	-	x	l_x	μ_x	$l_x \mu_x$
1	999917	-	-	41	982125	0.001106	1086.6	-	81	823033	0.016374	13476.65
2	999834	-	-	42	981008	0.001168	1145.72		82	808671	0.01891	15292.2
3	999751	0.000083	83	43	979834	0.001228	1203.52		83	792366	0.021903	17355.58
4	999668	0.000083	83	44	978600	0.001292	1264.33		84	773885	0.025381	19642.35
5	999585	0.000083	83	45	977304	0.00136	1329.07		85	753013	0.029394	22134.3
6	999502	0.000083	83	46	975940	0.001434	1399.3		86	729563	0.033974	24785.88
7	999419	0.000083	83	47	974503	0.001516	14/6.88		87	703405	0.03916	27545.27
8	999336	0.000083	83	48	972985	0.001601	1557.98		88	674454	0.045011	30357.85
9	999253	0.000083	83.25	49	9/1386	0.001691	1642.33		89	642694	0.05159	33156.42
10	999170	0.000081	81.33	50	969700	0.001/82	1/2/.62		90	608203	0.058814	35770.68
11	999087	0.00009	90.1	51	967930	0.001875	1815		91	571297	0.066428	37950.37
12	998989	0.000102	101.4	52	966068	0.001976	1908.72		92	532501	0.074244	39534.85
13	998886	0.000107	106.67	53	964113	0.002075	2000.87		93	492452	0.082135	40447.52
14	998772	0.000124	123.52	54	962068	0.00217	2087.95		94	451844	0.08996	40647.75
15	998632	0.000161	160.65	55	959940	0.002257	2166.45		95	411397	0.09754	40127.67
16	998440	0.000233	232.58	56	957738	0.002335	2236.17		96	371817	0.104691	38926.02
17	998165	0.000302	301.53	57	955468	0.002413	2305.1		97	333751	0.111176	37105.27
18	997801	0.000489	487.63	58	953126	0.002496	23/9.43		98	297747	0.117066	34856.07
19	997207	0.000623	620.95	59	950705	0.002594	2466.28		99	264088	0.122994	32481.33
20	996610	0.000595	593.15	60	948187	0.002/13	2572.25		100	232897	0.127721	29745.92
21	996014	0.000598	595.2	61	945550	0.002866	2709.52		101	204588	0.132142	27034.63
22	995419	0.000598	595.5	62	942754	0.003064	2000.75		102	178720	0.138013	24665.72
23	994823	0.000599	595.75	03	939760	0.003504	3103.17		103	155253	0.143548	22286.33
24	994228	0.000598	594.37	64	930535	0.003575	3548.15		104	134119	0.149114	19999.08
25	993634	0.000598	593.9	66	933003	0.003031	2022 4		105	115218	0.154683	17822.28
26	993040	0.000598	594	67	929349	0.004125	3033.4 4120.47		106	98432	0.160237	15772.48
27	992446	0.000599	594.12	68	925561	0.004455	4120.47		107	83626	0.165782	13863.72
28	991852	0.000598	593.48	60	921090	0.004023	4444.40		108	70655	0.171304	12103.47
29	991259	0.000598	593.12	70	910495	0.005191	4/5/.05		109	59368	0.1768	10496.27
30	990666	0.000598	592.03	70	911500	0.005500	5401 15		110	49611	0.182287	9043.42
31	990074	0.0006	593.67	71	900343	0.003939	5754 12		111	41231	0.187747	7740.98
32	989475	0.000613	606.33	72	804820	0.000388	6152 15		112	34081	0.193143	6582.5
33	988856	0.000642	634.65	73	094020	0.000873	6602.2		113	28020	0.198503	5562.05
34	9888200	0.000689	6811.94	74	885186	0.007431	7170.5		114	22914	0.203815	4670.22
35	987495	0.000734	724.85	75	874128	0.000101	7780 7		115	18640	0.209073	3897.12
36	986751	0.000777	766.27	70 77	865066	0.000911	8550 12		116	15084	0.214217	3231.25
37	985957	0.000837	824.97	78	856958	0.009004	9484 63		117	12145	0.227699	2765.4
38	985098	0.000906	892.6	70 70	046037	0.011000	11838 71		118	9729	0.137791	1340.57
39	984172	0.000975	959.42	80	035709	0.012302	13336.05	_	119	7755	0.738414	5726.4
40	983180	0.001041	1023.8	0	333700	0.014233	100000	-				

Table 2: Model 2

<i>x</i>	l_x	μ_x	$l_x \mu_x$	\overline{x}	l_x	μ_x	$l_x \mu_x$		7		
0	1000000	-	-	41	982125	0.001108	1088.49	<u></u>	l_x	μ_x	$l_x \mu_x$
1	999917	-	-	42	981008	0.001169	1146.51	81	823033	0.016663	13714.4
2	999834	0.000083	83.01	43	979834	0.00123	1205.43	82	808671	0.019301	15607.8
3	999751	0.000083	83.01	44	978600	0.001293	1265.69	83	792366	0.022427	17770.
4	999668	0.000083	83.01	45	977304	0.001362	1331.32	84	773885	0.026084	20185.2
5	999585	0.000083	83.01	46	975940	0.001435	1400.7	85	753013	0.030341	22847.0
6	999502	0.000083	83.01	47	974503	0.001519	1480.09	86	729563	0.035236	25707.0
7	999419	0.000083	83.01	48	972985	0.001603	1559.48	87	703405	0.040844	28729.
8	999336	0.000083	82.76	49	971386	0.001695	1646.41	88	674454	0.047228	31852.9
9	999253	0.000084	84.42	50	969700	0.001784	1729 79	89	642694	0.054518	35038.5
10	999170	0.000079	79.07	51	967930	0.001879	1818.9	90	608203	0.062616	38083.4
11	999087	0.000092	92.26	52	966068	0.001079	1912.5	91	571297	0.071268	40714.9
12	998989	0.000101	100.46	53	964113	0.00208	2005 1	92	532501	0.080281	42749.4
13	998886	0.000107	106.96	54	962068	0.00200	2003.1	93	492452	0.089517	44082.6
14	998772	0.000124	123.8	55	959940	0.002175	2092.0	94	451844	0.098805	44644.2
15	998632	0.000157	157.11	56	057738	0.002202	22771.7	95	411397	0.107917	44396.
16	998440	0.000247	246.87	57	055/68	0.00234	2240.99	96	371817	0.116652	43373
17	998165	0.000273	272.35	59	052126	0.002419	2284.80	97	333751	0.124624	41593.
18	997801	0.000521	519.68	50	050705	0.002502	2304.09	98	297747	0.131864	39262.
19	997207	0.000606	604.2	60	0/8187	0.002002	2578.64	99	264088	0.139753	36907.
20	996610	0.000599	597.19	61	045550	0.00272	2717.80	100	232897	0.145061	33784.
21	996014	0.000598	595.29	62	042754	0.002074	2717.09	101	204588	0.151465	30987.
22	995419	0.000599	596.17	63	030760	0.003315	3115.27	102	178720	0.158831	28386.
23	994823	0.000599	596.01	64	036535	0.003580	3361.38	103	155253	0.166165	25797.
24	994228	0.000598	594.66	65	933063	0.003369	3610 4	104	134119	0.173579	23280.
25	993634	0.000598	594.34	66	933003	0.003009	2844.26	105	115218	0.18106	20861.
26	993040	0.000598	594.26	67	025291	0.004137	1142 40	106	98432	0.188608	18565.
27	992446	0.000599	594.66	69	923301	0.004478	4143.49	107	83626	0.196218	16408.
28	991852	0.000598	593.47	60	921090	0.004049	4400.10	108	70655	0.203872	14404.
29	991259	0.000599	593.97	70	011590	0.005219	4/02./J	109	59368	0.211569	12560.
30	990666	0.000598	592.09	70	911560	0.0050	5104.41	110	49611	0.219338	10881.
31	990074	0.0006	594.21	/1	900343	0.006062	5494.21	111	41231	0.227136	9365.0
32	989475	0.000613	606.71	72	900769	0.005894	5309.01	112	34081	0.234916	8006.1
33	988856	0.000641	633.94	/3	894820	0.008953	8010.92	113	28020	0.242745	6801.
34	988200	0.000691	683.25	74	888447	0.002033	1806.25	114	22914	0.250534	5740.7
35	987495	0.000734	724.4	75	885186	0.010575	9360.45	115	18640	0.258385	4816.
36	986751	0.000777	766.43	76	8/4128	0.010657	9315.68	116	15084	0.257585	3885.4
37	985957	0.000838	826.29	77	865966	0.009848	8527.86	117	12145	0.349712	4247.2
38	985098	0.000907	893.24	78	856958	0.0112	9597.99	118	9729	-0.039916	-388.3
39	984172	0.000976	960.6	79	846937	0.012668	10728.97	119	7755	-	-
40	983180	0.001042	1024 43	80	835708	0.014475	12096.79				

x	l_x	μ_x	$l_x \mu_x$	\overline{x}	l_x	μ_x	$l_x \mu_x$				
0	1000000	-	-	41	982125	0.001108	1088.42	x	l_x	μ_x	$l_x \mu_x$
1	999917	0.000083	83	42	981008	0.001166	1144.33	81	823033	0.01637	13473.
2	999834	0.000083	83	43	979834	0.001229	1204 55	82	808671	0.018911	15293.
3	999751	0.000083	83	44	978600	0.001223	1263.22	83	792366	0.021906	17357.
4	999668	0.000083	83	15	077204	0.001251	1220.8	84	773885	0.025377	19638.
5	999585	0.000083	83	45	977304	0.001302	1206.82	85	753013	0.029398	22136.
6	999502	0.000083	83	40	973940	0.001431	1470.02	86	729563	0.033967	24781.
7	999419	0.000084	83.5	47	974503	0.001519	14/9.92	87	703405	0.039177	27556.
8	999336	0.00008	80.42	48	972985	0.001598	1554.48	88	674454	0.044999	30349.
9	999253	0.000089	88.95	49	9/1386	0.001694	1645.52	89	642694	0.051587	33154
.0	999170	0.000075	74.77	50	969700	0.00178	1725.83	90	608203	0.058818	35773.
1	999087	0.000094	94.15	51	967930	0.001876	1815.57	91	571297	0.06643	37951.
2	998989	0.0001	99.88	52	966068	0.001976	1908.67	92	532501	0.074242	39534.
3	998886	0.000107	106.42	53	964113	0.002075	2000.82	93	492452	0.082134	40447.
4	998772	0.000131	130.92	54	962068	0.00217	2087.43	94	451844	0.08997	40652.
5	998632	0.000129	128.65	55	959940	0.002258	2167.68	95	411397	0.097503	40112
6	998440	0.000125	305 37	56	957738	0.002333	2234.68	96	371817	0.104702	38930
7	008165	0.000300	208 78	57	955468	0.002414	2306.8	90	333751	0.111374	37171
, ,	007801	0.000209	EE2 6	58	953126	0.002494	2377.03	97	207747	0.11651	24600
0	997601	0.000555	555.0	59	950705	0.002597	2468.75	90	297747	0.11051	22690
9	997207	0.000596	590.47	60	948187	0.002711	2570.8	99	204000	0.123703	32004
1	996610	0.000599	597.37	61	945550	0.002866	2710.28	100	232897	0.12/12/	29607.
1	996014	0.000597	594.3	62	942754	0.003065	2889.68	101	204588	0.13238	27083.
2	995419	0.000599	596.02	63	939760	0.003302	3103.05	102	178720	0.137981	24659.
3	994823	0.000599	595.78	64	936535	0.003571	3344.08	103	155253	0.143541	22285
4	994228	0.000598	594.13	65	933063	0.003866	3606.93	104	134119	0.149119	19999
5	993634	0.000598	594.18	66	929349	0.004111	3820.28	105	115218	0.154681	17822.
6	993040	0.000598	593.53	67	925381	0.004458	4125.57	106	98432	0.160237	15772.
7	992446	0.0006	595.03	68	921096	0.004826	4444.95	107	83626	0.165783	13863.
8	991852	0.000597	592.12	69	916495	0.005189	4755 52	108	70655	0.171307	12103.
9	991259	0.000599	594.22	70	911580	0.005437	4956 55	109	59368	0.176795	10495.
0	990666	0.000597	591.37	70	006343	0.005457	6300.75	110	49611	0.182287	9043.4
1	990074	0.0006	593.85	71	000760	0.000952	2750.52	111	41231	0.187755	7741.
2	989475	0.000615	608.6	72	900709	0.003034	2750.52	112	34081	0.193127	6581.
3	988856	0.000637	629.52	73	894820	0.013588	12159.25	113	28020	0.198529	5562.
4	988200	0.000693	684.77	74	888447	-0.002707	-2404.75	114	22914	0.203771	4669.2
5	987495	0.000734	724.75	75	885186	0.013292	11/65.52	115	18640	0.220131	4103.2
6	986751	0.000775	764.62	76	874128	0.009597	8388.67	116	15084	0.122943	1854.4
87	985957	0.000838	825.97	77	865966	0.009881	8556.92	117	12145	0.55188	6702.5
88	985098	0.000905	891.97	78	856958	0.011073	9489.32	118	9729	-0.501365	-4877.
39	984172	0.000976	960.57	79	846937	0.012496	10583.32	119	7755	1.492424	11573
10	002100	0.00104	1022.02	80	835708	0.014259	11916.42		,,,,,,		

In model 4the force of mortality is derived as follows

 $\begin{array}{lll} \mu_x &=& \frac{1}{60l_x} [147l_x \, - \, 360l_{(x-1)} \, + \, 450l_{(x-2)} \, - \, 400l_{(x-3)} \, + \\ 225l_{(x-4)} \, - \, 72l_{(x-5)} \, + \, 10l_{(x-6)}]. \end{array}$

It is apparent that

 $l_x < l_{(x-1)} < l_{(x-2)} < l_{(x-3)} < l_{(x-4)} < l_{(x-5)} < l_{(x-6)}.$

Consequently, it becomes apparent that $\mu_x < 0$. The fact that the force of mortality becomes negative represents a phantom detected from the McCutcheon's mortality matrix.

5. Conclusion

In this paper, we have given a detailed analysis of mortality modelling based on McCutcheon's mortality matrices to explain decline in mortality at 10 years. Four models were developed to that effect. The first three models yield positive mortality intensities while the forth model was shown to produce negative mortality intensity. However in generalized Makeham's mortality class GM(m, n) = $\sum_{k=1}^{m} \beta_k C_{k-1}(\xi(x)) + exp \sum_{k=m+1}^{m+n} \beta_k C_{k-m-1}(\xi(x))$, this concept of mortality decline is not usually explained. This is because of the general level of exponential increase of ageing.

6. Acknowledgements

This study receives no funding from any source or agency.

References

- Das B & Chakrabarty D, Newton's forward interpolation: representation of numerical data by a polynomial curve, *International Journal of Statistics and Applied Mathematics*, 1(2) (2016) 36–41.
- [2] Das B & Chakrabarty D, Lagrange's interpolation formula: Representation of numerical data by a polynomial curve, *International Journal of Mathematics Trend and Technology*, 34(2) (2016) 23–31.
- [3] Campbell N, Some practical notes on reversions, with results of an investigation into the mortality among life-tenants, *Transactions of the Faculty of Actuaries*, 1 (1903) 79–108.
- [4] Dickson D C, Hardy M R & Waters H R, Actuarial mathematics for life contingent risks., *Annals of Actuarial Science*, 4(2) (2009) 339.
- [5] Putra D A, Fitriyati N & Mahmudi M, Fit of the 2011 indonesian mortality table to gompertz's and makeham's law using maximum likelihood estimation, *InPrime: Indonesian Journal of Pure* and Applied Mathematics, 1(2) (2019) 68–76.
- [6] Rabbi A M F & Karmaker S C, Estimation of force of mortality from third degree polynomial of lx, *European Scientific Journal*, 9(12).
- [7] Kovacheva P. Life tables—key parameters and relationships between them. In: International Mathematical Forum, vol. 12 (2017), pp. 469–479.
- [8] Siswono G O, Azmi U & Syaifudin W H, Mortality projection on indonesia's abridged life table to determine the epv of term annuity, Jurnal Varian, 4(2) (2021) 159–168.
- [9] McCutcheon J, On estimating the force of mortality, *Transactions of the Faculty of Actuaries*, 38 (1981) 407–417.