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Abstract
In this study, we present a simple but novel mathematical model to show the interaction of the five immunological cells in the lymphocyte family
– the cytotoxic-Lymphocytes (T), B-cell antibody, killer T – cell (K), the helper T – cell (H) and the Regulatory T – cell (R) –with foreign bodies
with or without treatment. The feasibility of the model and important parameters of invasion in mathematical epidemiology: the reproductive
number, free and infection persistence equilibrium, local and global stability among others were established. Results confirm the effectiveness
of booster (vaccination or drugs) of these cells (of the immune system as recovery of infected cells is quicker and sustainable with vaccinations
that boost these body cells. By this study drug producers are better informed about the effectiveness of the boosting components of vaccination
and drugs they produce and health workers have good insight and handful understanding of the efficacy of drugs and vaccines administered in
the treatment of virus infection.
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1. Introduction

The human body’s physical health is not a given; rather, it is the
outcome of a complex interplay of several mechanisms that work
continually to guard against illnesses of all kinds [1, 2, 3]. The im-
mune system is the collective name for all of these parts and func-
tional units working in concert in a highly clever, methodical way
[3, 4, 5, 6, 7]. Immune response refers to the coordinated, collec-
tive action of all the chemicals and cells that make up the immune
system [4, 6, 9, 10]. Many studies have been conducted to better
understand this complex defensive mechanism, and one of these
studies has focused on the activation of T cells that results from the
formation of a transient synapse between a T cell and an antigen-
presenting cell [7, 11, 12]. The T cell gathers information about the
pathogen during this intercellular interaction in order to start cer-
tain disease-prevention procedures [13, 14, 15, 16].Specificity, di-
versity, flexibility, adaptability, complexity, andmemory are some
characteristics of the immune system [17, 18, 19, 20]. It is capable
to identifying a wide variety of agents, including viruses, parasites,
bacteria, infected, and transformed host cells [5, 21, 22]. In order to
prevent infection, it separates them from the organism’s healthy
cells before attacking healthy tissue [19, 23, 24]. Additionally, it
has the capacity to form memories that will enable it to respond
much more quickly upon subsequent interaction with pathogens
[23, 25, 26]. The majority of the parts are cellular in nature and
aren’t connected to any one organ specifically; instead, they’re im-
planted or moving about in different tissues all throughout the
body [27, 28, 29]. Because of its omnipresence, the system is able
to respond in any situation and is not constrained to one location
[8, 18, 30].

Two distinct immune system subtypes can respond against per-
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turbations [19, 31]. The immune systems include innate immu-
nity and adaptive immunity [26, 27]. All of the first, non-specific,
generic immunological tactics are part of the innate immune sys-
tem [29, 30]. Examples of these include putting up physical and
chemical barriers to infections or utilizing specialized chemical
cues to draw certain immune cells to infection locations [31, 32, 33].
The pathogens are identified in a matter of minutes and are en-
tirely removed in a matter of hours. Pathogen-specific receptors,
which are present in all types of plant and animal life and are al-
ready encoded in the genetic material, serve as the foundation for
innate immunity [34, 35]. The capacity to respond quickly is caused
by the genetic specification of the protein structure, which limits
flexibility [33, 34, 35, 36].

In order to avoid infection by the same virus or bacteria, vac-
cinations, also known as immunizations, utilize a small quantity
of weakened or destroyed bacteria, viruses, or fragments of lab-
made proteins that mimic the viruses [37, 38, 39]. You are injected
with a disease that has been weakened (or a portion of it) when
you receive a vaccination [29, 30]. This sets off your body’s im-
munological response, which either causes it to develop antibodies
to that specific disease or to instigate other processes that boost
immunity[33]. Your immune system will then be ready to combat
the illness if you are ever exposed to the real disease-causing bac-
teria again [35, 36].

A vaccination will often stop a disease from spreading or lessen
its effects. Immunity lasts for differing amounts of time with var-
ious diseases and vaccinations. Lifetime immunity may not al-
ways be achieved with either vaccination or spontaneous infec-
tion [37, 38]. The purpose of the suggested timing of vaccination
doses is to provide the best immune protection to cover the stage
of life with the greatest susceptibility to the disease. Sincemany of
the vaccines used today are still relatively new, data on how long
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they last before losing their effectiveness is constantly being up-
dated. Natural infections cause a decline in immunity to numerous
diseases. The duration of protection provided by vaccinations de-
pends on a number of factors, chief among them the vaccination
itself. Live vaccinations typically result in longer-lasting protec-
tion than subunit vaccines. Memory cells with a long lifespan are
not produced by polysaccharide vaccines. If there is not enough
time between dosages, immunity may not last as long. As a result,
few gaps are required. Very small children and very old persons
may have brief immunity periods [40, 41].

Measurements of specific antibodies in the blood are typically
used to determine vaccine immunogenicity, which evaluates the
immunological response to a vaccine. A set threshold of particu-
lar antibody levels has been associated with protection for some
vaccines, but not all. This, however, does not unambiguously indi-
cate whether a person is completely immune to disease. Following
a booster dose of the vaccination, antibody levels significantly in-
crease if good immunological memory has been formed [42].

Measures of vaccine efficacy and effectiveness contrast illness
incidence rates in the vaccinated and unvaccinated populations.
Efficacy is assessed before the vaccine is authorized for use in the
general public, whereas effectiveness is assessed during controlled
clinical trials. These allow us to determine the percentage of im-
munized individuals who should be protected by the vaccination
[41, 42].

A crucial defense mechanism for the greater population is herd
immunity, also known as community immunity. For some diseases,
transmission is slowed or stopped if a sufficient number of people
are immune. This is especially true for illnesses like pneumococ-
cal disease and rubella. The disease must be kept from re-entering
the community by maintaining high vaccination rates. No vaccine
is 100% effective; a tiny proportion of recipients do not experi-
ence protection, and for some, the impact of the vaccine may wear
off over time. Additionally, some people cannot receive vaccina-
tions because of medical disorders including immune suppression.
Those close to these people are kept healthy, which shields them
from illness [23, 42].

Since studies suggest that the immune system has the ability to
suppress the increase in infected cells as well as virus load with the
aid of drug use, mathematical modeling of the dynamics of virus
cell and host cell (and/or the immune system) can be helpful to in-
terpret infection kinetics on quantitative grounds. Therefore, the
development of new avenues of thinking to advance quantitative
understanding of infection virus and its interaction with the host
cells is constantly needed to tackle many of the existing diseases
that threaten global health [14, 43]

In earlier research on vaccination treatment of say, Ebola virus,
only Cytotoxic-Lymphocyte (T) and B-cell (Antibody) (B) were con-
sidered as the only host cells that combat the Ebola virus in hu-
man body system and usage of drugs to enhance this host cells
(i.e., cytotoxic-Lymphocyte and B-cell Antibody) in the body sys-
tem was also clearly explained[34, 37, 38]. However there are still
some other vital cells in the human immune(the H- cells that en-
ergize both the B and T cells to effectively and efficiently combat
the virus, the R – cells that regulate the T, H and B cells to prevent
negative effect after the virus is cleared and the K – cells, natural
killer cells that react instantly when there is infection in the body
system) that combat with virus cells and their interactionwith this
foreign cell during treatment need be comprehensively explained
and understood to optimize treatment, control of the virus and
drug content that boost these cells in the body system. Hence we
present a feasible and novel mathematical model to include the
killer T – cell (K), the helper T – cell (H) and the Regulatory T – cell
(R) and comprehensively unravel the interaction of these cells with
virus cell, virus-free body cells, infected body cells and uninfected

Figure 1: Types of lymphocytes.

body cells during treatment [44].

1.1. Components of the immune system

There are five immunological cells in the lymphocyte family: B
cells transform into cells that produce antibodies once they iden-
tify soluble antigen and pathogens (Fig. 1); Helper T cells become
activatedwhen they detect a specific antigen on the surface of anti-
gen presenting cells (APCs) and begin to trigger other immune re-
sponse mechanisms; Cytotoxic T cells and NK cells both recognize
infected ormalignant cells and destroy them immediately, but reg-
ulatory T cells stop an excessive immune response, including ac-
tions against healthy tissue. NK cells only exhibit a very limited re-
ceptor diversity and are supposed to use a strategy known as miss-
ing self.
We’ll skim over a lot of the biological details of each key immune
system component in the sections that follow. Immune disor-
ders can have an impact on one or more bodily parts. Immune
deficiencies might show up as a specific infection or as a more
widespread susceptibility to sickness. Certain immunological de-
ficiencies can only be connected to a very small subset of infec-
tions because of the intricate relationships between immune sys-
tem cells and proteins. For specific immunological deficiencies,
there are extra elements that ”take up the slack” and can at least
partially compensate. In other cases, the person could struggle
mightily with infections and have a very weak overall immune sys-
tem [45, 46]. The many immune system cells include neutrophils,
monocytes/macrophages, and lymphocytes (T-cells, B-cells, and
NK cells). The several types of white blood cells are as follows. An-
tibodies complement proteins, and signaling proteins (commonly
known as cytokines) make up the majority of immune system pro-
teins [47].

1.2. B-Cells

B-cells, also known as B-lymphocytes or CD19 or CD20 cells on
lab reports, are specialized immune system cells whose main job
is to create antibodies (also called immunoglobulins or gamma-
globulins). In the bone marrow, hematopoietic stem cells give rise
to B-cells. B-cells are taught or trained throughout their matura-
tion in the bonemarrow not tomake antibodies against healthy tis-
sues. When fully developed, B-cells are present in the bloodstream,
lymph nodes, spleen, some regions of the gut, and bonemarrow. B-
cells respond to foreign substances (antigens) by developing into
plasma cells, a different cell type. B-cells can develop intomemory
cells, enabling a quick response in the event that the same illness
recurs. The mature cells that actually manufacture the antibodies
are known as plasma cells.
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Plasma cells’ primary output, antibodies, can enter the tissues,
bloodstream, digestive secretions, tears, and respiratory secre-
tions. The highly specialized serum protein molecules that make
up antibodies. There are antibody molecules created especially
to fit each foreign antigen like a lock and key [22, 48, 49]. For in-
stance, there are antibody molecules that physically suit the diph-
theria virus, the measles virus, and the poliovirus. Since there are
many distinct antibody molecules, B-cells can make them against
almost all of the bacteria in our surroundings. However, only one
type of antibody is produced by each plasma cell.When antibody
molecules identify a bacterium as foreign, they physically bind to
it, starting a complicated series of processes that eventually result
in the eradication of the germ. The particular roles that each type
of antibody plays in the body differ. The chemical structure of the
antibody determines these variances, which in turn determine the
class of the antibody (or immunoglobulin) [50, 51, 52].

Additionally, antibodies-coated bacteria are considerably sim-
pler for neutrophils to swallow and kill than non-antibody-coated
bacteria. Antibodies work in a variety of ways to stop microorgan-
isms from successfully colonizing bodily tissues and causing harm-
ful infections. We can maintain immunity to viruses and bacteria
that attacked us years ago thanks to the long lifespan of plasma
cells [53, 54, 55]. People who have received a full course of live
vaccine strains of themeasles virus, for instance, almost never con-
tract the disease because the vaccine leaves themwith long-lasting
plasma cells and antibodies that guard against infection [56, 57, 58].

1.3. T-Cells

T-cells, also known as T-lymphocytes or CD3 cells in lab studies, are
an additional category of immune cell. T-cells function as immune
system regulators and assault virus-infected cells directly. Though
they begin their development fromhematopoietic stem cells in the
bone marrow, T-cells complete it in the thymus. The immune sys-
tem’s specialized organ in the chest is called the thymus. Imma-
ture lymphocytes become mature T-cells in the thymus, whereas
T-cells that have the potential to harmhealthy tissues are removed
[16]. T-cell development depends on the thymus, which the fetus
lacks, T-cells cannot form.Mature T-cells move from the thymus
and are found in the blood, spleen, lymphnodes, bonemarrow, and
other immune systemorgans [17, 18]. Similar to howeach antibody
molecule reactswith a particular antigen, each T-cell also responds
to a particular antigen.
In fact, T-cells have molecules that resemble antibodies on their
surfaces. Since there are so many different T-cell types, the body
possesses T-cells that can respond to almost any antigen [59, 60,
61].
T-cells serve a variety of purposes and exhibit various antigen-
recognition capacities. There are three types of T cells: regulatory
T cells, helper T cells, and ”killer” or cytotoxic T cells (commonly
referred to as CD8 T cells in lab studies). Each has a unique role in
the immune system [3, 62, 63].

1.4. Killer T-cells

Killer T-cells, also known as cytotoxic T-cells, are what actually kill
infected cells. When certain bacteria and viruses can live and even
reproduce inside of the body’s own cells, the body is protected by
killer T-cells. Killer T-cells can react to organ transplants or other
foreign tissues when they are present in the body. To assure its an-
nihilation, the killer cell must get to the infection site and connect
to its target directly[40].

1.5. Helper T-cells

B-cells use helper T-cells to make antibodies, and killer T-cells use
helper T-cells to target foreign molecules[4, 5].

Figure 2: Flow diagram for dynamism of immune body system with virus
cells.

1.6. Regulatory T-cells
Other T-lymphocytes are suppressed or turned off by regulatory

T cells. Without regulatory cells, the immune system would con-
tinue to fight infections even after they were treated. The body
could ”overreact” to the infection if regulatory T-cells are absent.
Regulatory T-cells regulate the lymphocyte system’s level of acti-
vation, keeping it just right—neither too high nor too low [22].

2. Model formulation and description
To better comprehend the dynamic transmission of viral infec-

tions in the human cell population, the study employs an eight-
compartment, deterministic mathematical model of the U, I, V, K,
T, B, H, and R (Fig. 2). Uninfected cells (U), infected cells (I), free
virus (V), cytotoxic T-cells (T), natural killer cells (K), B-cell (anti-
body) (B), helper T-cells (H), and regulatory T-cells(R) are the dif-
ferent subgroups of the human cell population N(t), where

N = U + I + V +K + T +B +H +R.

Uninfected cell U are recruited at the rate πwith mortality rate
µ1and get infected at rate αand progress to classI . These infected
cell (I) has mortality rate µ2and some of them becomes virus free
at the rate ωwithout antibodies’ help and move to classV . To
eliminate the infected cells, the cytotoxic T-class (T) and natural
killer (K) begin to interact with them at the respective clearance
rateδIT andδIK During this interaction process, the Helper T-cells,
(H) also interact with antibody B-cells (B) to create antibodies for
virus- free cells (V) toward off further attack from the foreign body,
and Helper T-cells (H) furthermore interact with cytotoxic T-cells
(T) during their attack on infected cells (I).
To suppress or deactivate them, Regulatory T-cells (R) work with
Helper T-cells (H), Cytotoxic T-cells (T), and B-cells (Antibody)
class. Without Regulatory T-cells, the immune system would con-
tinue to function even after a disease has been treated. Without
Regulatory T-cells (R), the bodymay respond to the infection ”over-
reacting.” To keep the lymphocyte system just the right amount of
activated—neither too much nor too little—Regulatory T-cells (R)
serve as the thermostat.
The production rate of Uninfected cells (U) is and have mortality
rate. When a free virus infect the uninfected cells, U, and produced
infected cells, I, at rate and with death rate. Infected cells, I, move
to Free virus class, V, at rate and die at rate.
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Table 1: Description of state variables and parameters of the model.

States
variables or
Parameters

Description

U(t) Uninfected Cells
I(t) Infected cells
V(t) Free virus cells
T(t) Cytotoxic T-cells
B(t) Antibody B-cells
K(t) Natural killer cells
H(t) Helper T-cells
R(t) Regulatory T-cells
π rate at which uninfected cell are recruited
α rate at which uninfectedcell are infected
ω recovery rate of infected cell into free

virus cells, V
γ rate at which Cytotoxic T-cells are

produced
λ rate at which antibodies are produced
θI rate at which natural killer cells are

produced
θv rate at which natural killer cells are

produced
βT Help rate of cytotoxic, T-cells
βB Help rate of antibody, B-cells
ρH Regulatory rate of Helper, T-cells
ρB Regulatory rate of antibody, B-cells
δIK Clearance rate of infected cells by natural

killer cells
δIT Clearance rate of the viruses by antibodies
δ2K Clearance rate of the viruses by Natural

Killer cells
δ2B Clearance rate of the viruses by antibodies,

B-cells
µ1 Natural death rate of uninfected cell U
µ2 Death rate of infected cell I
µ3 Decay rate of the virus
µ4 Death rate of Natural killer cells
µ5 Death rate of antibody B-cells
µ6 Death rate of Cytotoxic T-cells
µ7 Death rate of Regulatory T-cells
µ8 Death rate of Helper T-cells
k1 Booster rate of Cytotoxic T-cells
k2 Booster rate of antibody B-cells
k3 Booster rate of Helper T-cells
k4 Booster rate of Regulatory T-cells
k5 Booster rate of Natural killer cells
ø Effectiveness of drug usage

As Infected cells, I, activate Cytotoxic T-class, T, the population
grows at a rapid rate , helped by Helper T-cells to attack the in-
fected cells at a rapid rate and would be regulated at a rapid rate ,
boosted at a rapid rate , killing infected cells, I, at a rapid rate , and
dying at a rapid rate .
Antibody B-cells are triggered by free virus cells, V, and produced
at rate, boosted at rate, neutralized the free virus, V, at rate with
death rate of B-cells as. Antibody B-cells are assisted by Helper T-
cells, H, to attack the free virus cells at rate and are regulated at
rate.
Helper T-cells, H, are boosted at rate, and die at rate, Helper T-cells,
H, assist antibody B-cells (B) to produce antibodies and assist cyto-
toxic T-cells (T) in their attack on the infected virus classes (I).
Regulatory T-cells (R) are produced by regulating Cytotoxic T-cells
(T), H-cells, and B-cells at rates respectively. Regulatory T-cells (R)
are boosted at rate and die at rate.
Natural killer cell (K), are triggered by Infected cells (I) at rate, and
free virus cells (V) at rate . Natural killer cell (K) are boosted at rate,
they kill infected cells (I) at rate and also kill free virus cells (V) at
rate and die at rate .
The effect of the drug () is to reduce the proliferation of infected
cells (I), the range of effectiveness of drug usage as thus measur-
ing the efficacy of drug.means the drug is wholly effective thereby
completely stopping the resurgence of infected cells while implies
there is no drug and control intervention against the virus infec-
tion.

3. Model formulation and analysis

3.1. Model equation

dU

dt
= π − (1− ϕ)αUV − µ1U

dI

dt
= (1− ϕ)αUV − ωI − γIT − θ1IK − µ2I − δ1T IT

− δIKIK

dV

dt
= ωI − λV B − θvV K − µ3V − δ2KKV − δ2BBV

dK

dt
= k5K + θIIK + θV V K − µ4K

dT

dt
= k1T + γIT

+ βTTH− µ6T − ρTTR

dB

dt
= k2B + λV B + βBBH− µ5B − ρBBR

dH

dt
= k3H − βBBH−ρHHR− βTTH − µ8H

dR

dt
= k4R+ ρTTR+ ρHHR+ ρBBR− µ7R (1)

3.2. Basic Properties of the model

3.2.1. Positivity of solutions
Since the human-cell population is being tracked by models Eq.1,
all of the parameters are positive. As a result, it is necessary to
demonstrate that all state variables are positive at all times t> 0.

Theorem 1. Consider the initial condition,

{U(0) ≥ 0, I(0) ≥ 0, V (0) ≥ 0, K(0) ≥ 0, T (0) ≥ 0,

B(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0} ∈ D

the solution set {U, I, V, K, T, B, H, R}
of the system Eq. 1 is positive for allt ≥ 0.
Proof
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Recall from the system of Eq. 1
dU

dt
= π − (1− ϕ)αUV − µ1U (2)

Removing the positivity term π on RHS

dU

dt
≥ −U [(1− ϕ)αV + µ1 (3)

Writing Eq. 3 in the form of linear differential equation
dU

dt
= −[(1− ϕ)αV + µ1]U (4)

Eng. Reports

dU

dt
+ [(1− ϕ)αV + µ1]U = 0 (5)

This is solvable by integrating factor (IF) method as;

I.F = ℓ
∫
[(1−ϕ)αV +µ1]dt

U(t)× ℓ
∫
[(1−ϕ)αV +µ1]dt =

∫
0× ℓ

∫
[(1−ϕ)αV +µ1]dtdt+ C

U(t)× ℓ
∫
[(1−ϕ)αV +µ1]dt = C

U(t) = Cℓ−
∫
[(1−ϕ)αV +µ1]dt

Since U(0) = U0

U(t) = U0ℓ
−

∫
[(1−ϕ)αV +µ1]dt

Then the general solution of Eq.5 is

U(t) = U0ℓ
−

∫
[(1−ϕ)αV +µ1]dt (6)

U(t) > 0, ∀t ≥ 0

From the system of Eq.1
dI

dt
= (1− ϕ)αUV − ωI − γIT − θ1IK

− µ2I − δ1T IT − δIKIK

Removing the positivity term (1− ϕ)αUV on RHS

dI

dt
≥ −[ω + γT + θ1K + µ2 + δ1TT + δIKK]I (7)

Writing Eq. 7 in the form of linear differential equation
dI

dt
= −[ω + γT + θ1K + µ2 + δ1TT + δIKK

+ µ2 + δ1TT + δIKK]I

dI

dt
+ [ω + γT + θ1K + µ2 + δ1TT

+δIKK + µ2 + δ1TT + δIKK]I = 0 (8)
This is also solvable by IF method to give a general solution;

I(t)

= (I0)ℓ
−

∫
[ω+γT+θ1K+µ2+δ1T T+δIKK+µ2+δ1T T+δIKK]dt

= I(t) > 0, ∀t ≥ 0 (9)
Following the same process for the system of Eq. 1, we obtain;

V (t) = V0ℓ
−

∫
[λB−θvK+µ3+δ2KK+δ2BB]dt, V (t) > 0, ∀t ≥ 0

K(t) = K0ℓ
−

∫
µ4dt,K(t) > 0, ∀t ≥ 0

T (t) = T0ℓ
−

∫
[µ6+ρTR]dt, T (t) > 0, ∀t ≥ 0

B(t) = B0ℓ
−

∫
[µ5+ρBR]dt, B(t) > 0, ∀t ≥ 0

H(t) = H0ℓ
−

∫
[βBB+ρHR+βT T+µ8]dt, H(t) > 0, ∀t ≥ 0

R(t) = R0ℓ
−

∫
µ7dt, R(t) > 0, ∀t ≥ 0

(10)

3.2.2. Boundedness of solutions
The addition of cell compartments of the system of Eq. 1.
The total population size isN = U+I+V +K+T +B+H+R

dN
dt

= π − (1− ϕ)αUV − µ1U + (1− ϕ)αUV − ωI − γIT

−θ1IK − µ2I − δ1T IT

−δIKIK + ωI − µ3V − δ2KKV − δ2BBV + k5k + θIIK

+θV V K − µ4K + k1T + γIT

+βTTH− µ6T − ρTTR+ k2B + λV B + βBBH− µ5B

−ρBBR+ k3H − βBBH−ρHHR

−βTTH − µ8H + k4R+ ρTTR+ ρHHR+ ρBBR− µ7R

dN
dt

= π − µ2I − δ1T IT − δIKIK − µ3V − δ2KKV

−δ2BBV + k5k + θIIK + θV V K − µ4K + k1T + γIT

−µ6T + k2B + λV B − µ5B + k3H − µ8H + k4R− µ77

(11)

Theorem 2:
The solution of the system Eq. 1 is feasible att > 0

if they enter the regionD = {U, I, V,K, T,B,H,R} ∈ R8.
Proof:
Let D = {U, I, V,K, T,B,H,R} ∈ R8 be any solution of the
system Eq. 1 with non-zero conditions.
Assuming that there is no infection i.e.

δ1T = δIK = ω = δ2K = δ2B = k5 = θI = θV = k1 = γ = k2

= λ = k3 = k4 = 0,

then Eq. 11 becomes

dN

dt
= π − µ1N (12)

Where µ1 = µ2 = µ3 = µ4 = µ6 = µ5 = µ8 = µ7

Eq.12 becomes;
dN

dt
+ µ1N = π

Which is solvable by IF to get

N(t) =
π

µ1
[1− ℓ−µ1t] +N0ℓ

−µ1t (13)

And ast → ∞,N(t) = π
µ1

N approaches π
µ1

as t → ∞in Eq. 13,
Hence all feasible solution of Eq. 1 enter in the region

D = {U(t), I(t), V (t), K(t), T (t), B(t), H(t), R(t) ∈ R8 :

U(t), I(t), V (t), K(t), T (t), B(t), H(t), R(t) ≥ 0

U(t) + I(t) + V (t) +K(t) + T (t) +B(t) +H(t) +R(t) ≤ N ;

N ≤ π
µ1

}

Therefore, the region of themodel is positively invariant and equa-
tion Eq. 1 are epidemiologically meaningful and mathematically
well posed in the domain D.

⇒ N0 ≤ N(t) ≤ π

µ1
(14)

Hence, the total cell population is bounded.



6 A. C. Loyinmi et al.

3.2.3. Equilibrium states of the model
At equilibrium states,

dU

dt
=

dI

dt
=

dV

dt
=

dK

dt
=

dT

dt
=

dB

dt
=

dH

dt
=

dR

dt
= 0 (15)

Therefore, Infection Free Equilibrium (IFE) denoted as

E0 = (U0, I0, V 0,K0, T 0, B0, H0, RO)

= [
π

µ1
, 0, 0, 0, 0, 0, 0, 0] (16)

3.3. Control reproductive number
We introduce themethod of next generation to derive the control reproductive number ofmodel Eq. 1, [9]. We therefore have the following;

dI

dt
= (1− ϕ)αUV − ωI − γIT − θ1IK − µ2I − δ1T IT − δIKIK

dV

dt
= ωI

F =

(
(1− ϕ)αU0V 0

ωI0

)

V =

(
ωI0 + γI0T 0 + θ1I

0K0 + µ2I
0 + δ1T I

0T 0 + δIKI0K0

λV 0B0 + θvV
0K0 + µ3V

0 + δ2KK0V 0 + δ2BB
0V 0

)

Let I = f1, V=f2

F =

[
df1
dI

df1
dV

df2
dI

df2
dV

]
=

[
0 (1− ϕ)αU0

ω 0

]
(17)

Let I = v1, V=v2

F =

[
df1
dI

df1
dV

df2
dI

df2
dV

]
=

[
0 (1− ϕ)αU0

ω 0

]
(18)

Let I = v1, V=v2

V =

[
dv1
dI

dv1
dV

dv2
dI

dv2
dV

]
=

[
ω + γT 0 + θ1K

0 + µ2 + δ1TT
0 + δIKK0 0

0 λB0 + θvK
0 + µ3 + δ2KK0 + δ2BB

0

]
(19)

V −1 =
1

|V |adjV

FV −1 =

[
0 (1−ϕ)απ

µ1(λB0+θvK0+µ3+δ2KK0+δ2BB0)
ω

(ω+γT0+θ1K0+µ2+δ1T T0+δIKK0)
0

]
(20)

The characteristic equation of Eq. 20 is

∣∣FV −1 − λ
∣∣ = ∣∣∣∣∣ −λ (1−ϕ)απ

µ1(λB0+θvK0+µ3+δ2KK0+δ2BB0)
ω

(ω+γT0+θ1K0+µ2+δ1T T0+δIKK0)
−λ

∣∣∣∣∣ (21)

And the Determinant of Eq. 21 is

λ2 = − ω(1− ϕ)απ

µ1(λB0 + θvK0 + µ3 + δ2KK0 + δ2BB0)(ω + γT 0 + θ1K0 + µ2 + δ1TT 0 + δIKK0)
= 0

λ =

√
ω(1− ϕ)απ

µ1(λB0 + θvK0 + µ3 + δ2KK0 + δ2BB0)(ω + γT 0 + θ1K0 + µ2 + δ1TT 0 + δIKK0)
(22)

where λ is the largest eigenvalue which is spectral of ℓ(FV −1). Therefore, the control reproductive number is

Rc =

√
ω(1− ϕ)απ

µ1(λB0 + θvK0 + µ3 + δ2KK0 + δ2BB0)(ω + γT 0 + θ1K0 + µ2 + δ1TT 0 + δIKK0)
(23)
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3.4. Stability analysis of the DFE
Existence of the DFE points are the stable-state solutions
where the virus infectiondies out fromall the cells, which connotes
the total is uninfected cells.
Then

U0 ̸= 0, (24)
We obtain the DFE point at E0 by putting

U = I = V = K = T = B = H = R = 0 (25)
Where their respect First Differential Equation is zero

π − (1− ϕ)αUV − µ1U = 0

(1− ϕ)αUV − ωI − γIT − θ1IK − µ2I − δ1T IT

− δIKIK = 0

ωI − λV B − θvV K − µ3V − δ2KKV − δ2BBV = 0

k5k + θIIK + θV V K − µ4K = 0

k1T + γIT + βTTH− µ6T − ρTTR = 0

k2B + λV B + βBBH− µ5B − ρBBR = 0

k3H − βBBH−ρHHR− βTTH − µ8H = 0

k4R+ ρTTR+ ρHHR+ ρBBR− µ7R = 0 (26)

Since U0 ̸= 0, at DFE,

U0 = I0 = V 0 = K0 = T 0 = B0 = H0 = R0 = 0

Thus the system Eq. 26 now becomes

π − µ1U
0 = 0

⇒ U0 =
π

µ1
(27)

This gives the equilibrium states of the model, therefore,
Infected Free Equilibrium (IFE), denoted

E0 = (U0, I0, V 0,K0, T 0, B0, H0, RO)

=

[
π

µ1
, 0, 0, 0, 0, 0, 0, 0

]
(28)

3.5. Local stability of infected free equilibrium (E0)

Theorem 3:
The Infection Free Equilibrium of themodel equations Eq. 1 is local
asymptotically stable if all eigenvalues of the system’s Jacobian are
non-positive real values.
Proof:
Owing to the above theorem, Jacobian Matrix of the systems of
equation Eq. 1 at IFE

E0 = (
π

µ1
, 0, 0, 0, 0, 0, 0, 0)

We have Jacobian Matrix, J(U, I, V, K, T, B, H, R)

J =

−µ1 0 −(1− ϕ)α π
µ1

0 0 0 0 0

0 −ω − µ2 (1− ϕ)α π
µ1

0 0 0 0 0

0 ω −µ3 0 0 0 0 0

0 0 0 (k5 − µ4) 0 0 0 0

0 0 0 0 (k1 − µ6) 0 0 0

0 0 0 0 0 (k2 − µ5) 0 0

0 0 0 0 0 0 (k3 − µ8) 0

0 0 0 0 0 0 0 (k4 − µ7)


(29)

|J − λI| =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ1 − λ 0 −(1− ϕ)α π
µ1

0 0 0 0 0

0 − (ω + µ2)− λ (1− ϕ)α π
µ1

0 0 0 0 0

0 ω −µ3 − λ 0 0 0 0 0

0 0 0 (k5 − µ4)− λ 0 0 0 0

0 0 0 0 (k1 − µ6)− λ 0 0 0

0 0 0 0 0 (k2 − µ5)− λ 0 0

0 0 0 0 0 0 (k3 − µ8)− λ 0

0 0 0 0 0 0 0 (k4 − µ7)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(30)

−µ1 − λ is the only non-zero entry in the first column;
Hence

λ1 = −µ1 < 0 (31)

Delete the perpendicular rows and columns
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J0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− (ω + µ2)− λ (1− ϕ)α π
µ1

0 0 0 0 0

ω −µ3 − λ 0 0 0 0 0

0 0 (k5 − µ4)− λ 0 0 0 0

0 0 0 (k1 − µ6)− λ 0 0 0

0 0 0 0 (k2 − µ5)− λ 0 0

0 0 0 0 0 (k3 − µ8)− λ 0

0 0 0 0 0 0 (k4 − µ7)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(32)

Similarly in row 3 (k5 − µ4)− λ is the only non-zero entry,
Hence

λ2 = −(µ4 − k5) < 0, if, µ4 > k5 (33)

J1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− (ω + µ2)− λ (1−ϕ)απ
µ1

0 0 0 0

ω −µ3 − λ 0 0 0 0

0 0 (k1 − µ6)− λ 0 0 0

0 0 0 (k2 − µ5)− λ 0 0

0 0 0 0 (k3 − µ8)− λ 0

0 0 0 0 0 (k4 − µ7)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(34)

Similarly in row 3, (k1 − µ6)− λas the only entry
Hence

λ3 = −(µ6 − k1) < 0, if, µ6 > k1 (35)

J2 =

∣∣∣∣∣∣∣∣∣∣∣∣

− (ω + µ2)− λ (1−ϕ)απ
µ1

0 0 0

ω −µ3 − λ 0 0 0

0 0 (k2 − µ5)− λ 0 0

0 0 0 (k3 − µ8)− λ 0

0 0 0 0 (k4 − µ7)− λ

∣∣∣∣∣∣∣∣∣∣∣∣
(36)

Similarly in row 3, (k2 − µ5)− λas the only entry
Hence

λ4 = −(µ5 − k2) < 0, if, µ5 > k2 (37)

J3 =

∣∣∣∣∣∣∣∣∣∣
− (ω + µ2)− λ (1−ϕ)απ

µ1
0 0

ω −µ3 − λ 0 0

0 0 (k3 − µ8)− λ 0

0 0 0 (k4 − µ7)− λ

∣∣∣∣∣∣∣∣∣∣
(38)

Following above process of deleting required column and row to reduce matrix to echelon form, we have,
λ5 = −(µ8 − k3) < 0, if with µ8 > k3,

λ6 = −(µ7 − k4) < 0, if with µ7 > k4, λ7 = −µ2 < 0,

Rc =

√
ω(1− ϕ)απ

µ1(λB0 + θvK0 + µ3 + δ2KK0 + δ2BB0)(ω + γT 0 + θ1K0 + µ2 + δ1TT 0 + δIKK0)

λ8 =
ω(1− ϕ)απ

µ1(λB0 + θvK0 + µ3 + δ2KK0 + δ2BB0)
− (ω + γT 0 + θ1K

0 + µ2 + δ1TT
0 + δIKK0),

λ8 =
ω(1− ϕ)απ

µ1(λB0 + θvK0 + µ3 + δ2KK0 + δ2BB0)(ω + γT 0 + θ1K0 + µ2 + δ1TT 0 + δIKK0)
− 1 < 0 (39)

Eq. 31- 42 gives the eigenvalues of the Infection Free Equilibrium of model Eq. 1.
Theorem 4:
The Infection Free Equilibrium (IFE) of the model Eq.1 is local asymptotically stable ifRc < 1
Proof
From λ8of the obtain eigenvalues, then we have

Rc =

√
ω(1− ϕ)απ

µ1(λB0 + θvK0 + µ3 + δ2KK0 + δ2BB0)(ω + γT 0 + θ1K0 + µ2 + δ1TT 0 + δIKK0)

Rc
2 =

ω(1− ϕ)απ

µ1(λB0 + θvK0 + µ3 + δ2KK0 + δ2BB0)(ω + γT 0 + θ1K0 + µ2 + δ1TT 0 + δIKK0)
At

λ8 =
ω(1− ϕ)απ

µ1(λB0 + θvK0 + µ3 + δ2KK0 + δ2BB0)(ω + γT 0 + θ1K0 + µ2 + δ1TT 0 + δIKK0)
− 1 < 0
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We can then write

λ8 = R2
c − 1 < 0 (40)

R2
c − 1 < 0

R2
c < 1

Therefore,

Rc < 1 (41)
Eq. 41 holds and justifying theorem 2.
Thus, the Infection Free Equilibrium, E0 of Eq. 1 is locally asymp-
totically stable if Rc<1. Hence the epidemiological implications of
the theorem is that Ebola virus may be control or eradicated from
cell population whenRc < 1.

3.6. Global stability of infected free equilibrium (E0)
Theorem 5:
The Infection Free Equilibrium is globally asymptotically stable
(GAS) if.
Proof
Lyapunov function is used to investigate the stability of the (IFE).
To establish the global stability of the IFE, we selected infected
classes for construction of Lyapunov function, we have

Rc < 1

dI

dt
= (1−ϕ)αUV −ωI−γIT −θ1IK−µ2I−δ1T IT −δIKIK

dV

dt
= ωI − λV B − θvV K − µ3V − δ2KKV − δ2BBV

ωI − λV B − θvV K − µ3V − δ2KKV − δ2BBV

L(I, V ) = (λB+ θvK+µ3+ δ2KK+ δ2BBV )I+(1−ϕ)αUV
(42)

And as good candidate for a lyapunov function andmust satisfied
.

L(I, V ) ≤ 0, for,Rc ≤ 1 (43)
Derivative of Eq. 42

.

L(I, V ) = (λB+ θvK+µ3+ δ2KK+ δ2BBV )
.

I+(1−ϕ)αU
.

V
(44)

Substitute for
.

Iand
.

V from Eq. 1 into Eq. 44
.

L(I, V ) = (λB + θvK + µ3 + δ2KK + δ2BBV )

((1− ϕ)αUV − ωI − γIT − θ1IK − µ2I − δ1T IT − δIKIK)

+(1− ϕ)αU (ωI − λV B − θvV K − µ3V − δ2KKV − δ2BBV )

L(I, V ) = (1− ϕ)αUV (λB + θvK + µ3 + δ2KK + δ2BBV )

+ (−ωI − γIT − θ1IK − µ2I − δ1T IT − δIKIK)

(λB + θvK + µ3 + δ2KK + δ2BBV )

+(1− ϕ)αU(ωI)− (λB + θvK + µ3 + δ2KK + δ2BBV )

(1− ϕ)αU

(45)

.

L(I, V ) = (1− ϕ)αUV (λB + θvK + µ3 + δ2KK + δ2BB)

+ (−ωI − γIT − θ1IK − µ2I − δ1T IT − δIKIK)

(λB + θvK + µ3 + δ2KK + δ2BB)

+(1− ϕ)αU(ωI)−
(λB + θvK + µ3 + δ2KK + δ2BBV ) (1− ϕ)αU

.

L(I, V ) = (1− ϕ)αUV (λB + θvK + µ3 + δ2KK + δ2BB)

−(1− ϕ)αU (λB + θvK + µ3 + δ2KK + δ2BB)

+ (−ωI − γIT − θ1IK − µ2I − δ1T IT − δIKIK)

(λB + θvK + µ3 + δ2KK + δ2BB)

+(1− ϕ)αU(ωI)

L(I, V ) = (1− ϕ)αUV (λB + θvK + µ3 + δ2KK + δ2BB)

−(1− ϕ)αU (λB + θvK + µ3 + δ2KK + δ2BB)

+ (−ω − γT − θ1K − µ2 − δ1TT − δIKK)

(λB + θvK + µ3 + δ2KK + δ2BB) + (1− ϕ)αUωI

(46)
Eq. 46 reduced to

.

L(I, V ) = (−ω − γT − θ1K − µ2 − δ1TT − δIKK) (47)
(λB + θvK + µ3 + δ2KK + δ2BB) + (1− ϕ)αUωI

Implies
.

L(I, V ) = (1− ϕ)αUω−
(ω + γT + θ1K + µ2 + δ1TT + δIKK) (48)
(λB + θvK + µ3 + δ2KK + δ2BB) I

At the infraction -free equilibrium state, Eq. 48 gives,

L(I, V ) =
(1− ϕ)απω

µ1
−(

ω + γT 0 + θ1K
0 + µ2 + δ1TT

0 + δIKK0) (49)(
λB0 + θvK

0 + µ3 + δ2KK0 + δ2BB
0) I

From Eq. 49 we have

.

L(I, V ) =
(
ω + γT 0 + θ1K

0 + µ2 + δ1TT
0 + δIKK0) (50)(

λB0 + θvK
0 + µ3 + δ2KK0 + δ2BB

0) (R2
c − 1

)
I

Hence we have,
.

L(I, V ) ≤ 0; IfR2
c − 1 ≤ 0, then,R2

c ≤ 1
Therefore

Rc ≤ 1 (51)
This completes the proof.
The infection free equilibrium is globally asymptotically stable
(GAS) ifRc ≤ 1.

3.6.1. Infection persistence equilibrium
Theorem 5:
Let

E1 = (U, I, V,K, T,B,H,R) = (U #, I#, V #,K#, T #, B#, H#, R#)

be an infection persistence equilibrium point, Eq. 50 becomes

π − (1− ϕ)αU #V # − µ1U
# = 0

(1− ϕ)αU #V # −
(
ω + γT # + θ1K

# + µ2 + δ1TT
# + δIKK#) I# = 0

ωI# −
(
λB# + θvK

# + µ3 + δ2KK# + δ2BB
#)V # = 0(

k5 + θII
# + θV V # − µ4

)
K# = 0(

k1 + γI# + βTH# − µ6 − ρTR
#)T # = 0(

k2 + λV # + βBH# − µ5 − ρBR
#)B# = 0(

k3 − βBB
#−ρHR

# − βTT
# − µ8

)
H# = 0(

k4 + ρTT
# + ρHH# + ρBB

# − µ7

)
R# = 0

(52)
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Table 2: Values and source of state variables.

State
Variables

Value Source

U 50 Assumed
I 17 Assumed
V 100 Assumed
K 5 Assumed
T 3 Assumed
B 5 Assumed
H 5 Assumed
R 5
Total 190

And we have the simplified equations to be

π − (1− ϕ)αU #V # − µ1U
# = 0

π − µ1U
#−(

ω + γT # + θ1K
# + µ2 + δ1TT

# + δIKK#) I# = 0

ωI# −
(
λB# + θvK

# + µ3 + δ2KK# + δ2BB
#)V # = 0

k5 + θII
# + θV V # − µ4 = 0

k1 + γI# + βTH# − µ6 − ρTR
# = 0

k2 + λV # + βBH# − µ5 − ρBR
# = 0

k3 − βBB
#−ρHR

# − βTT
# − µ8 = 0 (53)

k4 + ρTT
# + ρHH# + ρBB

# − µ7 = 0

By further simplification we have,

U # =
π

((1− ϕ)αV # − µ1)
(54)

I# =
µ4 − k5 − θV V #

θI

H# =
µ6 + ρTR

#k1 − γ
(

µ4−k5−θV V #

θI

)
βT

R# =

µ5 − k2 − λV # − βB

µ6+ρTR#k1−γ

(
µ4−k5−θV V #

θI

)
βT


ρB

B# = −βBB
# + ρHR

# + βTT
# + µ8 − k3

βB

T # =
k4 + ρHH# + ρBB

# − µ7

ρT
(55)

4. Numerical simulations

The numerical simulations were carried out and the results are
shown in Table 2-3, and Fig. 3-10.

Table 3: Values and Source of Parameters.

Parameter Value Source
π 5.05cells/ml/day Wester, 2015

α
0.1-

0.8cell/ml/day CDC, 2014

ω 0.9 Assumed
γ 0.1ml/cell/day Banton et al., 2010
λ 0.1nl/cell/day Lasisi et al., 2018
θI 0.1cell/day Assumed
θv 0.1cell/day Assumed
βT 0.1cell/day Assumed
βB 0.25cell/day Assumed
ρH 0.25cell/day Assumed
ρB 0.1cell/day Assumed
δIK 0.1cell/day Assumed
δIT 0.1ml/cell/day Wester, 2015
δ2K 0.1cell/day Assumed
δ2B 0.1ml/cell/day Lasisi et al., 2018
µ1 0.1cell/day Assumed
µ2 0.5cell/day Lasisi et al., 2018
µ3 0.015cell/day Assumed
µ4 0.1cell/day Assumed
µ5 0.02cell/day Lasisi et al, 2018
µ6 0.5cell/day Wester 2015
µ7 0.1cell/day Assumed
µ8 0.5cell/day Assumed
k1 0.25 Lasisi et al, 2018
k2 0.25 Lasisi et al, 2018
k3 0.02 Assumed
k4 0.02 Assumed
k5 0.25 Assumed
ø 0< ø<1 Lasisi et al, 2018
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Figure 3: Efficacy of Drugs on the uninfected cell population within the first ten days.

Figure 4: Efficacy of Drugs on the infected cell population within the first ten days

Figure 5: Efficacy of Drugs on the free virus cell population within the first ten days
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5. Discussion and interpretation of results

5.1. Efficacy of Drugs on the uninfected cell population
within the first ten days

We conducted simulations bymanipulating drug usagewith the pa-
rameter values outlined in Table 3. Fig. 3 illustrates an increase in
the count of uninfected cells (U), indicating that the utilization of
drugs as an intervention strategy can effectively manage the infec-
tion rate within the population. Additionally, the findings demon-
strate that maintaining optimal drug usage leads to a consistent
level of uninfected cells.

5.2. Efficacy of Drugs on the Infected Cell Population within
the First Ten Days

By manipulating the drug usage in accordance with the parameter
values provided in Table 3, we observed a significant reduction in
infected cells within the first two days, as depicted in Fig. 4. This
observation underscores the role of drug usage in effectively curb-
ing the infection rate in the population. Furthermore, it is notewor-
thy that a stable condition is achieved one day after the initiation
of drug intervention.

5.3. Efficacy of Drugs on the Free Virus Cell Population
within the First Ten Days

In Fig. 5, it is evident that as the efficiency of drug administration
improves, there is no notable alteration in the population of free
virus cells. This observation aligns with the findings reported by
[31], which suggest that antiviral medications primarily operate
by interrupting the infectious process rather than directly elimi-
nating viruses.

5.4. Efficacy of Drugs on the Cytotoxic T-cell Population
Within the First Ten Days

The simulation conducted using the parameter values specified in
Table 3 demonstrates a significant decline in cytotoxic T-cells with
an increase in drug usage (Fig. 6). This underscores the importance
of a delicate balance in the administration of drugs for virus treat-
ment. It serves as a clear reminder to healthcare professionals that
when administering drugs to combat viruses, it’s essential to strike
a careful equilibrium between alleviating the patient’s symptoms
by reducing the virus’s inflammatory effects and minimizing po-
tential harm from the drug’s toxic side effects. This approach often
involves the use of drugs like corticosteroids, which are employed
in transplant recipients and for the treatment of inflammatory, au-
toimmune, and allergic conditions. In these cases, combining such
drugs with others is a common strategy aimed at minimizing both
the dosage and the associated toxic effects, as discussed by [15].

5.5. Efficacy of Drugs on the Antibody B-cell Population
within the First Ten Days

Fig. 7 illustrates that when we conduct simulations using the pa-
rameter values outlined in Table 3, there is typically little to no
significant impact of drugs on antibody B-cells. This outcome can
be attributed to the fact that antibody B-cells remain free from
viruses. B cells are responsible for producing antibodies, which
are specialized proteins that have the ability to bind to pathogens
or foreign substances, such as toxins, in order to neutralize them.
For instance, antibodies can attach themselves to viruses, prevent-
ing them from entering healthy cells and causing infections. Addi-
tionally, B cells can also recruit other immune cells to assist in the
elimination of infected cells. Consequently, healthcare practition-
ers may not need to assess the effectiveness of drugs on antibody
B-cells when administering them for viral treatments.

5.6. Efficacy of Drugs on the Natural Killer Cell Population
within the First Ten Days

The numerical outcomes from the simulation, as depicted in Fig. 8,
reveal that there is a reduction in the population of natural killer
cells as the drug dosage increases. In simpler terms, a reduction in
the drug dosage would lead to an increase in the natural killer cell
population. Typically, immune cells recognize the presence of the
major histocompatibility complex (MHC) on cell surfaces, which
triggers the release of cytokines and leads to the lysis or apoptosis
of cells that either lack MHC I or express significantly lower lev-
els of it compared to normal cells [28]. Unlike phagocytes, natu-
ral killer (NK) cells do not require the target cells to be opsonized
(marked) by antibodies before they can take action, resulting in a
quicker immune response. However, opsonins can expedite this
process.

5.7. Efficacy of Drugs on the Helper T-cell Population within
the First Ten Days

Fig. 9 provides a detailed illustration of the interaction between
drugs and Helper T-cells in the presence of a foreign agent. Helper
T-cells are arguably the most crucial cells in the context of adap-
tive immunity, as they play an essential role in nearly all adaptive
immune responses. Their functions extend to not only activating
B cells for antibody secretion and enabling macrophages to elim-
inate ingested microbes but also aiding in the activation of cyto-
toxic T cells for the destruction of infected target cells. As vividly
demonstrated in AIDS patients, the absence of helper T cells leaves
us vulnerable even to many microbes that are typically harmless
[12]. Therefore, healthcare professionals must ensure the mainte-
nance of Helper T-cell functionality regardless of the drug dosage
administered in the treatment of viral infections.

5.8. Efficacy of Drugs on the Regulatory T-cell Population
within the First Ten Days

In conclusion, we conducted a simulation to examine the impact
of drugs on regulatory T-cells, as depicted in Fig. 9 and Fig. 10.
The results reveal a modest increase in the population of regula-
tory T-cells as the drug dosage escalates. This occurrence is due
to the fact that as the drug dosage increases, the response of cy-
totoxic T-cells intensifies. Consequently, there’s a need for an in-
crease in the population of regulatory T-cells to effectively modu-
late the response of cytotoxic T-cells within the body. This adjust-
ment serves to mitigate the consequences of the drug administra-
tion by healthcare professionals in the context of viral infection
treatment. Regulatory T cells (Tregs) represent a specialized sub-
set of T cells with the unique function of suppressing immune re-
sponses, thereby preserving homeostasis and self-tolerance. Stud-
ies have demonstrated that Tregs possess the ability to inhibit T
cell proliferation and cytokine production, playing a critical role
in preventing autoimmune reactions [24].

6. Conclusion

In this research paper, we introduced a unique mathematical
model aimed at elucidating the dynamics of virus cell interactions
with the human immune system. To validate the viability of this in-
novative model, we derived equilibrium points for infection-free
states, persistent infection states, and calculated the control re-
production number. These parameters were essential for analyz-
ing both the local and global stability of the infection-free equi-
librium. Our simulations yielded noteworthy results, indicating
that the population of natural killer cells increases its effective-
ness in eliminating foreign viruses from infected cells and free
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Figure 6: Efficacy of Drugs on the cytotoxic T-cell population within the first ten days

Figure 7: Efficacy of Drugs on the Antibody B-cell population within the first ten days

Figure 8: Efficacy of Drugs on the Natural killer cells population within the first ten days
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Figure 9: Efficacy of Drugs on the Helper T-cells population within the first ten days

Figure 10: Efficacy of Drugs on the Regulatory T-cells population within the first ten days
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virus cells. This outcome supports our decision to incorporate nat-
ural killer cells into the model, affirming their crucial role. Sim-
ilarly, regulatory T-cells demonstrated an increase in their popu-
lation, contributing to the regulation of immune responses within
the body. The collective impact of boosters, including vaccinations
and drugs, on various immune cell populations in combating for-
eign agents proved to be highly significant. This study provides
valuable insights into the intricate interplay between immune sys-
tem cells and virus cells, shedding light on the dynamics of these
interactions.
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