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Abstract
Fractional calculus is a fascinating field of mathematics that focuses on the study of integrals and derivatives of arbitrary orders, extending
the principles of basic calculus. Its applications span across various scientific, engineering, and other disciplines. In this study, the collocation
method, in conjunction with the utilization of the fourth kind Chebyshev polynomials, is employed to explore solutions for fractional integro-
differential equations of Fredholm type. By applying the collocationmethod, the problem at hand is transformed into a system of linear algebraic
equations. These equations are subsequently solved by employingmatrix inversion techniques to determine the unknown constants. To provide
a comprehensive understanding and visualization of the results, the research incorporates tables and figures, which present numerical examples
and comparisons. These comparisons serve to highlight the superior performance of the proposedmethod in terms of efficiency and convenience
when compared to traditional methods. By showcasing the advantages of the collocation method and the utilization of fourth kind Chebyshev
polynomials, the research underscores the potential of these approaches in solving fractional integro-differential equations.
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1. Introduction
The field of fractional calculus emerges as a natural extension of

the conventional calculus integral and derivative operators, anal-
ogous to how fractional exponents stem from integer exponents.
Unlike regular calculus, which restricts derivatives to natural num-
bers, fractional calculus allows for derivatives of any real order.
This versatility makes fractional calculus highly applicable across
a wide range of scientific and engineering domains. Fractional cal-
culus proves invaluable in modeling various scientific phenomena,
including image processing, earthquake engineering, biomedical
engineering, computational fluid dynamics, heat distribution in
furnaces, virus propagation, and satellite positioning in space. No-
tably, references [1,2,3,4] provide comprehensive insights into the
fundamental concepts of fractional calculus and its applications
acrossmultiple disciplines. Due to the inherent complexity of Frac-
tional Integro-Differential Equations (FIDEs), analytical solutions
are often elusive, necessitating the exploration of approximation
and numerical methods. Previous studies have utilized different
approaches, such as Legendre-Gauss quadrature combinedwith Lu-
cas wavelets [5], Laguerre polynomials [6,7], semi-analytical meth-
ods [8], Bernstein modified homotopy perturbation approach [9],
collocation techniques with various basis functions [10,11,12], ap-
proximate solutions using Volterra-Fredholm IDEs [13], Sumudu
transform method and Hermite spectral collocation method [14],
and investigation of fractional derivatives in nonlinear reaction-
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diffusion equations [15]. The numerical solution of fractional sin-
gular IDEs has been explored using the Galerkinmethod, Taylor se-
ries expansion, and Chebyshev polynomials [16, 17]. Researchers
have investigated the numerical solution of the fractional Ben-
ney equation [18], employed the least-squares method [19, 20],
and introduced the sinc-collocation approach for linear Fredholm
IDEs [21]. Linear fractional Fredholm IDEs were addressed using
second-kind Chebyshev wavelets [22], while numerical techniques
were applied to solve nonlinear integro-differential equations [23].
The Sinc-Galerkin method was utilized to tackle space-fractional
boundary value problems [24]. Additionally, the numerical solu-
tion of fractional integro-differential problems was achieved us-
ing cubic B-spline wavelets [25]. The homotopy analysis trans-
form approach was employed for efficient solutions of FIDEs [26],
and a comparative examination of numerical techniques for frac-
tional IDEs was conducted [27]. Inspired by the aforementioned
research, this study introduces a computational algorithm that em-
ploys fourth-kind Chebyshev polynomials as basis functions for
solving FIDEs. This method offers improved accuracy while reduc-
ing computational costs, thus presenting a promising approach to
efficiently address FIDEs.
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Substituting ι(z),ϖ(z), σ(z), ζ(z) and η(z) in equation (6), gives

ι(z) +ϖ(z) + σ(z) + ϵ(z) = f(z) + q(z) (7)

Collocating (7) at equally spaced point zi = a + (b−a)i
n

, i =
0, 1, 2 . . . n gives linear system algebraic of equations in (n+1) un-
known constants a′

is. Additional equations are obtained from
equation (2), which are represented in matrix form:
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where P ′
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i ’s are the coefficients of a′
is and Q′

is are
values of f(zi).

The matrix inversion approach is then used to solve the system
of equations in order to obtain the unknown constants.
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Solving equation (9) yields the unknown constants, which are
then substituted into the assumed approximate solution in equa-
tion (5) to obtain the required approximate solution.

4. Numerical examples
Example 1. Consider the fractional Fredholm Integro-differential
shown below [33].

ζ
′′
(z) +Dαζ(z) + ζ(z) = f(z) + 2

∫ 1

0

K(z, t)ζ(t)dt, (10)

Subject to ζ(0) = 0,ζ(1) = 0, for α = 1
2
,

where

f(z) = −6z + z(1− z2) +
2z0.5 − 3.3z2.5

Γ(0.5)

− 2(14− 5e)(1 + z
1
2 )

e

K(z, t) = (1 + z
1
2 )e−t

The exact solution is ω(z) = z − z3.

Applying the proposed technique for different values of α =
0.5, 0.6, 0.7, 0.8, we have the following approximate solutions.
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For α = 0.5,

ζ(z) = 1.000000001s− 0.0000000005539314020z2

− 6.773549718× 10−11 − 0.0000007969168026z5

+ 0.000002216216189z6 − 0.000003543763114z7

− 1.000000013z3 + 0.000003272789627z8

− 0.000001623419848z9 + 0.0000001525225959z4

+ 0.0000003349596227z10

For α = 0.6,

ζ(z) = 1.012516177z + 1.878206717z4

+ 8.475917199z8 − 1.399509651z3

− 11.48751572z7 − 0.000736567728z2

− 5.244739592z5 + 9.661026652z6

− 3.528066395z9 + 0.3684479231× 10−5

+ 0.6328959819z10

For α = 0.7,

ζ(z) = 1.022608544z + 4.473556998z4

+ 0.00001370788345 + 20.72876377z8

− 1.914103134z3 − 28.03704528z7

− 0.00218649120z2 − 12.68998686z5

+ 23.50734227z6 − 8.640655837z9

+ 1.551685353z10

For α = 0.8,

ζ(z) = 1.028909687z + 7.925116395z4

+ 37.78530153z8 − 2.555535709z3

− 50.99064098z7 − 0.00446864518z2

− 22.85418843z5 + 42.60511321z6

− 15.77619846z9 + 2.836532123z10

+ 0.00003768357627

For α = 0.9,

ζ(z) = 1.029802479z + 12.31769516z4

+ 60.56758193z8 − 3.322656232z3

− 81.52267696z7 − 0.00767260138z2

− 36.13681627z5 + 67.84838188z6

− 25.33547416z9 + 4.561689378z10

+ 0.00008982173221

Example 2. Consider the fractional Fredholm Integro-differential
shown below [33].

ζ
′′
(z)− z2Dαζ(z) + zζ(z) = f(z)−

∫ 1

0

K(z, t)ζ(t)dt, (11)

Subject to ζ(0) = 0,ζ(1) = 0, for α = 0.3,
where

f(z) = −z5 + s3 − 12z2 +
4z

15
+

68

35

+
24

Γ(4.7)
z5.7 − 2

Γ(2.7)
z3.7

K(z, t) = 2z − z2

The exact solution is ζ(z) = z2(1− z2).

Applying the proposed technique for different values α =
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, we have the following approximate
solutions.
For α = 0.3,

ζ(z) = −0.000000001113458825z + 0.9999999997z2

+ 0.00000004940973504z3 + 0.000008655725195z7

− 1.000000494z4 − 0.000007565990700z8

− 1.412625578× 10−11 − 0.000005785864943z6

+ 0.000003577554707z9 + 0.000002271521353z5

− 0.0000007071503205z10

For α = 0.4,

ζ(z) = −0.0003980866494z + 1.000055421z2

− 0.00002298244777z3 + 0.005338570547z6

− 0.01244940592z7 + 0.005627248008z5

− 1.000350638z4 + 0.002203273777z8

− 0.0002416560346z10 + 0.0002382558454z9

− 5.795053600× 10−12

For α = 0.5,

ζ(z) = −0.0003157163139z + 1.000157321z2

− 0.0001172215148z3 + 0.008273388952z6

− 0.02558403537z7 + 0.01340702138z5

− 1.000779210z4 + 0.005203663772z8

− 0.0005608165666z10 + 0.000315605515z9

− 1.552820800× 10−12

For α = 0.6,

ζ(z) = 0.0004128464578z + 1.000318755z2

− 0.0003072690378z3 + 0.007334296146z6

− 0.03806329378z7 + 0.02380888838z5

− 1.001237780z4 + 0.008297688875z8

− 0.001023542478z10 + 0.000459410337z9

− 7.251342900× 10−12

For α = 0.7,

ζ(z) = 0.001998437927z + 1.000556090z2

− 0.0006241632762z3 + 0.00069385209z6

− 0.04785095081z7 + 0.03728808048z5

− 1.001636049z4 + 0.01014946485z8

− 0.001765448447z10 + 0.001190686564z9

− 6.834071000× 10−12

For α = 0.8,

ζ(z) = 0.004712134595z + 1.000890101z2

− 0.001106362635z3 − 0.01384708196z6

− 0.05202184980z7 + 0.05423713877z5

− 1.001829107z4 + 0.00849687675z8

− 0.003043230907z10 + 0.00351138094z9

− 2.833750000× 10−13
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Figure 1: Approximation solutions of example 3.

Figure 2: Approximation solutions of example 2.

For α = 0.9,

ζ(z) = 0.008907426096z + 1.001347608z2

− 0.001800170595z3 − 0.03889766815z6

− 0.04647314646z7 + 0.07494111780s5

− 1.001610728z4 − 0.00030247757z8

− 0.005323318470z10 + 0.00921135674z9

− 2.018833000× 10−12

5. Numerical results
The numerical results of Example 1 and Example 2 are shown in

Table 1 and Table 2 respectively.

6. Discussion of results
In the comparative analysis, we examined the results obtained

from the sinc interpolation and quadratic approaches presented
in reference [33]. Upon comparing these findings with our pro-
posed method, it becomes evident, as illustrated in Table 1 and 2,
that our method significantly outperforms the results reported in
[33]. To provide further evidence of the accuracy achieved by our

Figure 3: Comparison of the absolute errors of Example 1.

Figure 4: Comparison of the absolute errors of Example 2.

proposed method, Fig. 1 showcases the exceptional agreement be-
tween the approximate solutions and the exact solutions at α val-
ues ofα = 0.5 and 0.6. Notably, as the value of alpha increases, rang-
ing from α =0.7 to 0.9, the curve flattens out. Fig. 2 offers addi-
tional insights, demonstrating the close correspondence between
the approximate solutions and the exact solution for α values of
0.3, 0.4, and 0.5. However, as the α value further increases, specif-
ically from 0.7 to 0.9, the curve becomes steeper. Furthermore, by
comparing the absolute errors between our proposed method and
the errors reported in [33], as depicted in Fig. 3 and 4, it becomes
evident that our approach yields significantly smaller errors. This
indicates the superior accuracy and reliability of our method in ap-
proximating the exact solutions. Fig. 1 and 2 not only highlight the
accuracy of our proposedmethod but also emphasize the potential
for utilizing different α values as a means of controlling systems.
The variations in theα parameter allow for fine-tuning and adjust-
ing the behavior of the system under consideration.

7. Conclusion

In this study, we employed a robust collocation computational
algorithm to obtain numerical solutions for fractional integro-
differential equations. By implementing this method, we achieved
significantly higher accuracy compared to the results obtained in
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Table 1: Numerical results for Example 1.

s Exact Our Method AS [33] AS Our Method AE [33] AE
0.0 0 0 0 0 0
0.1 0.099 0.09900000000000 0.098998 0 1.21E − 06
0.2 0.192 0.19200000000000 0.191998 0 1.85E − 06
0.3 0.273 0.27300000020000 0.272998 1.557E − 10 1.73E − 06
0.4 0.3360 0.33600000010000 0.335999 1.817E − 10 8.77E − 07
0.5 0.375 0.37500000010000 0.375001 1.812E − 10 5.51E − 07
0.6 0.384 0.38400000010000 0.384002 1.560E − 10 2.23E − 06
0.7 0.357 0.35700000010000 0.357004 9.694E − 11 3.70E − 06
0.8 0.288 0.28800000000000 0.288004 0 4.34E − 06
0.9 0.171 0.17099999990000 0.171003 1.018E − 10 3.40E − 06
1.0 0 0 0 0 0

AS: Approximate Solution, AE: Absolute Error

Table 2: Numerical results for Example 2.

s Exact Solution Our Method AS [33] AS Our Method AE [33] AE
0.0 0 0 0 0 0
0.1 0.0099 0.00989999989000 0.009899 1.107E − 10 1.15E − 09
0.2 0.0384 0.03839999982000 0.038399 1.942E − 10 4.51E − 09
0.3 0.0819 0.08189999972000 0.081899 2.778E − 10 1.05E − 08
0.4 0.1344 0.13439999980000 0.134399 3.434E − 10 4.40E − 09
0.5 .1875 0.18749999950000 0.187499 3.987E − 10 1.72E − 08
0.6 0.2304 0.23039999960000 0.230399 4.490E − 10 2.76E − 08
0.7 0.2499 0.24989999950000 0.2498999 4.652E − 10 3.40E − 08
0.8 0.2304 0.23039999960000 0.230399 4.231E − 10 4.20E − 08
0.9 0.1539 0.15389999970000 0.153899 3.426E − 10 5.12E − 08
1.0 0 0 0 0 0

AS: Approximate Solution, AE: Absolute Error

the two cases presented in [33]. Our findings were rigorously val-
idated through extensive numerical calculations, which demon-
strated excellent agreement between our numerical solutions and
the exact solutions. Based on the remarkable accuracy and reliabil-
ity demonstrated by our proposed collocation computational algo-
rithm,wehighly recommend its adoption for addressing other frac-
tional integro-differential equations of higher order. Themethod’s
effectiveness in yielding precise results positions it as a valuable
tool for tackling complex problems in the realm of fractional cal-
culus. Researchers and practitioners alike can benefit from lever-
aging this technique to obtain accurate solutions for a wide range
of fractional integro-differential equations.
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[10] Varol Bayram D & Dasçıoğlu A, A method for fractional
volterra integro-differential equations by laguerre poly-
nomials, Advances in Difference Equations, 2018(1) (2018)
466. ISSN 1687-1847. URL https://doi.org/10.1186/
s13662-018-1924-0.

[11] Ma X & Huang C, numerical solution of fractional integro-
differential equations by a hybrid collocationmethod, Applied
Mathematics and Computation, 219(12) (2013) 6750–6760.

https://doi.org/10.1186/s13662-018-1924-0
https://doi.org/10.1186/s13662-018-1924-0


6 T. Oyedepo et al.

[12] Ma X & Huang C, Spectral collocation method for linear frac-
tional integro- differential equations, Applied Mathematical
Modelling, 38(4) (2014) 1434–1448.

[13] Alkan S & Hatipoglu V F, Approximate solutions of volterra-
fredholm integro-differential equations of fractional order,
Tbilisi Mathematical Journal, 10(2) (2021) 30–36.

[14] Amr Y A, Mahdy A M S & Youssef E S M, Solving fractional
integro- differential equations by using sumudu transform
method and hermite spectral collocation method, computers,
Materials and Continua, 54(2) (2018) 161–180.

[15] Atangana A, On the new fractional derivative and application
to nonlinear fisher’s reaction-diffusion equation, comput,Ma-
terials and Continua, 273 (2016) 948–948.

[16] Mohamed D S, Numerical solution of fractional singular
integro- differential equations by using taylor series expan-
sion and galerkinmethod, Journal of Pure and AppliedMathemat-
ics: Advances and Application, 12(2) (2014) 129–143.

[17] Nemati S, Sedaghatb S, Mohammadi I S B & Ahmed A H,
Solving sa fast numerical algorithm based on the second
kind chebyshev polynomials for fractional integro- differen-
tial equations with weakly singular kernel, Journal of Computa-
tional and Applied Mathematics, 308 (2016) 231–242.

[18] Akinlar M A, Secer A & BayramM, Solving numerical solution
of fractional benney equation, Applied Mathematics and Infor-
mation Sciences, 8(4) (2014) 1633–1637.

[19] MahdyAMS&Mohamed EMH,Numerical studies for solving
system of linear fractional integro-differential equations by
using least squares method and shifted Chebyshev polynomi-
als, Journal of Abstract and and Computational Mathematics, 1(1)
(2016) 24–32.

[20] Mohammed D S, Numerical solution of fractional integro-
differential equations by least squares method and shifted
Chebyshev polynomial, Mathematical Problems in Engineering,
2014 (2014) 431965. ISSN 1024-123X. URL https://doi.org/
10.1155/2014/431965.

[21] Mohsen A & El-Gamel M, A sinc-collocation method for the
linear fredholm integro-differential equations, Zeitschrift für
angewandte Mathematik und Physik, 58(3) (2007) 280–390. doi:
10.1007/s00033-006-5124-5.

[22] Setia A L. Y. and vatsala. In: Solution A S, ed., of linear frac-
tional Fredholm integro-differential equation by using second kind
Chebyshev wavelet, 11th Int. New Generations Las Vegas, April
465-469, Conference on Info. Tech. (2014), pp. 7–9.

[23] Sharif A H, A. and ghadle, k, Solving nonlinear integro-differential
equations by using numerical techniques, Acta Universitatis Apulen-
sis, 61 (2020) 45–53.

[24] Alkan S & Secer A, Application of Sinc-Galerkin method for
solving space-fractional boundary value problems,Mathemati-
cal Problems in Engineering, 2015 (2015) 217348. ISSN 1024-123X.
URL https://doi.org/10.1155/2015/217348.

[25] Khosrow Maleknejad M N S & Ostadi A. Numerical solution
of fractional integro-differential equation by using cubic B-
spline wavelets. In: Proceedings of the World Congress on Engi-
neering, vol. 1. WCE, London, U.K. (2013). WCE 2013, July 3 - 5,
2013,.

[26] Mohamed M S, Alharthi M R & Alotabi R A, Solving fractional
integro differential equations by homotopy analysis trans-
formmethod, International Journal of Pure andAppliedMathemat-
ics, 106(4) (2016) 1037–1055. doi:10.12732/ijpam.v106i4.6.

[27] Kumar K, Pandey R K & Sharma S, Comparative study of three
numerical schemes for fractional integro-differential equa-
tions, Journal of Computational Applied Mathematics, 315 (2017)
287–302.

[28] Wazwaz A M. Partial Differential Equations and Solitary Waves
Theory. HEP and Springer, Beijing and Berlin (2009).

[29] Oyedepo T, Taiwo O A, Adewale A J, Ayinde I A A & Nu-
merical M A, solution of system of linear fractional integro-
differential equations by least squares collocation chebyshev
technique, Mathematics and Computational Sciences, 3(2) (2022)
10–21.

[30] Doha EH, Abd-elhammedWM&BassuonyMA, On using third
and fourth kinds chebyshev operational matrices for solving
lane-emden type equations,Mathematical Physics (2014) 1–12.

[31] Eslahchi M R, Dehghanb M & Amania S, The third and fourth
kinds of chebyshev polynomials and best uniform approxi-
mation, Mathematical and Computer Modelling., 55 (2012) 1746–
1762.

[32] Bello O A, Taiwo O A, Odetunde O S & Abubakar A, On the per-
formance of four kinds of chebyshev polynomial in numerical
treatment of multi-order fractional differential equations, La-
pai Journal of Applied and Natural Sciences, 4(1) (2019) 1–8.

[33] Ibrahim E, An approximation method for fractional integro-
differential equations, Journal of De Gruyter Open Access, 13(15)
(2015) 370–376.

https://doi.org/10.1155/2014/431965
https://doi.org/10.1155/2014/431965
https://doi.org/10.1155/2015/217348

	Introduction
	Numerical examples
	Numerical results
	Discussion of results
	Conclusion

