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Abstract
Analysis of causal relationships held an important part of the theoretical and empirical contribution in quantitative economic theory. This
research explored the performance of Bayesian quantile regression with Granger causality showing that Bayesian inference can be undertaken in
the context of quantiles regression. Causality Bayesian inferences in the context of quantile regression were achieved by applying the framework
of the generalized linear model using asymmetric Laplace distribution for the error term. The developed scheme allows assessing the impact of
the explanatory variables on all quantiles range of the conditional distribution of GDP growth. In Practical usage of macroeconomics variables,
the scheme can be used to estimate parameters with causality effect which is synonyms to time series data. This research contributed to the
versatile application of quantile regression in the contest of statistical research, the study estimated the regression quantiles parameter estimate
applying Bayesian procedures. Furthermore, compared to frequentist estimates, Bayesian estimates established the superiority of the Bayesian
regression method to the frequentist approach.
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1. Introduction

The central location, the scale, the skewness, and other higher-
order properties not central location alone characterize a distribu-
tion, thus mean models are inherently ill-equipped to character-
ize the relationship between a response distribution and predictor
variable. Developed by [15], quantile regression complements and
improves the classical mean regression models, in this situation of
homogeneity assumption violated, quantile regression quantifies
the heterogeneous effect of covariates through conditional quan-
tiles of the outcome variable and provides a comprehensive scan
of the whole distribution of the outcome. Since the path-breaking
of work of [15], quantile regression models have been increasingly
used in many applied areas in economics due to their flexibility
to allow researchers to investigate the relationship between eco-
nomic variables not only at the center but also over the entire
conditional distribution of the dependent variable. Several propos-
als in the literature applied quantile regression techniques, among
many others [4,7,14]. Regression analysis seeks to find the relation-
ship between one or more independent variables and a dependent
variable, certain widely used methods of regression such as ordi-
nary least squares have favorable properties if their underlying as-
sumptions are true, but can give wrong inference and misleading
decisions if those assumptions are not true; thus, OLS is said not
too robust to violations of its assumptions. The Bayesian models
allow for the inclusion of prior distributions of the estimated pa-
rameters leading to an altogether different set of considerations
than that of the classical approach. In recent years, many of the
perceived difficulties of implementing the Bayesian paradigm can
be tackled through the application of Markov Chain Monte Carlo
simulation methods. Bayesian methods do not need to be tested
for their sampling properties [10] instead they are concerned with
the facts that the correct likelihood and prior are being employed
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so that Markov Chain Monte Carlo (MCMC) methods converge to
the implied posterior distribution.

Accounting for uncertainty is paramount to Bayesian analysis,
as to the computations associated with most common tasks e.g es-
timations, predictions, evaluation of hypothesis are typically inte-
grations. In some situations, it is possible to perform such integra-
tion exactly either by taking advantage of conjugate structure in
the prior- likelihood or by using dynamic programming when the
dependencies between random variables are appropriately simple.
The Bayesian framework of regression quantiles implemented via
the Markov Chain Monte Carlo method provides a convenient way
of incorporating uncertainty into predictive inferences [22].

The Bayesian paradigm is fundamentally about integration: in-
tegration computes posterior estimates and measures of uncer-
tainty, eliminates nuisance variables or missing data, and aver-
agesmodels to compute predictions or perform themodel compar-
ison. Bayesian inference depends onprior and likelihood functions.
Based on empirical justification, itwas observed fromresearch that
Asymmetric Laplace distribution for response is robust to underly-
ing likelihoods. Asymmetric Laplace distribution has good perfor-
mance on data generated error distributions [18,24] among others)
and theoretic justification.

Furthermore, skewed Laplace distribution possesses an attrac-
tive attribute, it can be represented as a scale mixture of normal
distribution, [17,21]. Themixtures representations allow the quan-
tile regressionmodel to be expressed as a normal regressionmodel.
This property appears in [18], [23], and [3] in conducting Bayesian
quantile regression via Gibbs sampler. The goal of many sciences
is to understand the mechanism by which variables come to take
on the values they have (i.e. to find a generative model) and to
predict what the values of those variables would be if the natu-
rally occurringmechanismswere subject to outsidemanipulations.
The definition of Granger non-causality is defined in terms of the
conditional distribution, testing non causality in conditional mean
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based on the linear model is very common in literature [11]. More-
over, non-causality is defined in variance [9,11] and non-causality
in other moments. Several new emerging methods are in the liter-
ature for testing causality that deals with different data generating
processes [6,9,11].

Granger causality is based on precepts that cause preceded ef-
fect and the causal series that had information about the effect that
was not contained in any other series according to conditional dis-
tributions [13]. Causal relations between variables are typically ex-
amined by testing Granger non-causality. [9] examined causal ef-
fects in quantiles accounting for heteroscedasticity usingMetropo-
lis’s sampling Algorithm. This research adopted the conceptual
and empirical framework of Granger causality and Bayesian quan-
tile regression in estimations of regression quantiles across the en-
tire distribution. The testing procedure is based on a multivari-
ate extension of the classical Granger causality in mean, the test
is extended to test non-causality in different quantile and identify
the quantile range which causality is relevant using the Bayesian
paradigm. This researchwill fill the vacuum in the literature by ex-
amining the Granger causality effect on Bayesian quantile regres-
sion models using Gibb’s sampling algorithm.

2. Methodology

yt = XT
t βτ + ϵt (1)

t = 1, ..., n where yt is the response variable and xt, a kx1 vector
of covariates for the tth observation. ϵt is the error term whose
distribution is restricted to have τ th quantile equal to zero, that is∫ 0

−α

Fτ (ϵt)dϵt = τ (2)

letQτ (xt) denote tth (0 < τ < 1) quantile regression function of
yt is given xt. The relationship is

Qτ (xt) = x
′
tβ (3)

where βτ is a vector of unknown parameters of interest. Quantile
regression estimation βτ proceeds by minimizing

β̂τ = argminβeRk

n∑
t=1

ρτ (yt − x
′
tβτ ) (4)

where the loss function ρ is simplified as

ρτ (u) = [τ − I(u < 0)]u (5)

and the model’s residuals are formulated as an indicator function
with

Iu =

[
1 foru < 0
0 otherwise

]
(6)

The quantile β̂τ is the τ th quantile.
The loss function is not differentiable; solutions to theminimiza-

tion cannot be derived explicitly. The linear programmingmethod
in R was designed to obtain quantile regression estimates for β̂τ .
this linear programming problem was solved using the simplex it-
eration procedure of Koenker and Dorey (1993), the minimum was
obtained at the vertices of the feasible region.

3. Causality in quantiles
Given that distribution is completely determined by its quan-

tiles, Granger non-causality can be expressed in terms of condi-
tional quantiles. IfQyi(τ |F ) denotes the τ th quantile of Fyi(.|F )

Qyi(τ |y, x)t−1 = Qyi(τ |yt−1) (7)

Granger causality is usually considered in the context of linear re-
gressionmodels and since the true distribution andparameters val-
ues are unknown a statistical test of

Qτyt(yt|y, x)t−1 = Qyt(yt|yt−1) (8)

for all ∀τϵ(0, 1) was performed using an observed sample of data
on a specifiedmodel. Then the conditional quantile at a probability
level τ is

Qyt(τ) = y′
t−1α(τ) + x′

t−1β(τ) (9)

x is said not to granger cause y in all quantile if equation (8) holds.
Bayesian causality testing was performed by erecting a standard
credible interval on the relevant parameters 2.5th and 97.5th qaun-
tiles of each MCMC sample of parameter iterates to form 95% cred-
ible intervals. If 0 is not contained in this interval the parameter is
considered significantly different to 0 that is testing

H0 : β(τ) = 0vsH1 : β(τ) ̸= 0

Causality quantile regression model was considered as follows;
yt = Y ′

t−1α(τ) +X ′
it−1βτ + εt (10)

where
Y ′
t−1 = (1, yt−1, ..., yt−p)

′, (11)

X ′
it−1 = (xit−1, xi1,t−q, ..., xit−1, ..., xir,t−q)

′, (12)

α(τ) = (α0(τ), α1(τ), ..., αp(τ))
′, (13)

β(τ) = (β1,1(τ), β1,q1(τ), ..., βr,qr (τ))′, (14)

where
Y ′t−1, X

′
it−1

are the regressors; α(τ), β(τ) are coefficient of causality parame-
ters and the εt follows the process;

εt = εt−1 + Ut (15)

where
U ∼ iiid(N0, σ2). (16)

the model inference theoretically requires the initial values
(y0...yt − p) and (x1...xt − p), noting that error terms Ut are
independent normal, the assumption that errors are independent
overall individual and periods implies that the transformed model
simply reduces to the standard linear regression framework, the
density can be expressed as

f(y∗
t

∣∣X ′∗
t−1, α, β, ) =

1

(2πσ2)(t−p)/2

exp
[
−(y∗

t −X∗
t−1)

T (y∗
t −X ′∗

t−1)

2σ2

]
(17)

3.1. Causuality Bayesian quantile regression

Bayesian estimation of parameters in the model in (10) begins
by erecting a likelihood that follows the asymmetric Laplace dis-
tribution. Due to the complexity of the asymmetric Laplace distri-
bution and thus difficulty to maximize its likelihood function, the
asymmetric Laplace distribution was represented as a location of
scalemixture of normal distributionwhere themixing distribution
follows an exponential distribution, for effective and easy draw.

y∗
t = Y ′∗

t−1α(τ) +X ′∗
it−1β(τ) + θzi + δ

√
ziui (18)
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A scale parameter was introduced in themodel in equation(18) to
account for the spread of the distribution across the entire quan-
tiles, this is given as:

y∗
t = Y ′∗

t−1α(τ) +X ′∗
it−1β(τ) + σθzi + δ

√
ziui (19)

Reparametrizing equation(19) for easy sampling gives;
y∗
t = Y ′∗

t−1α(τ) +X ′∗
it−1β(τ) + θvi + δ

√
σviui (20)

This leads to the likelihood function

f
(
y∗
t

∣∣Y ′∗
t−1α,X

′∗
t−1β, v, σ, , τ

)
exp

[
−
∑n

t=1

(
y∗
t − Y ′∗

t−1α(τ)−X ′∗
t−1β(τ)− uv2i

)
2δ2σvi

]∏ 1

σvi

(21)

Given the above, to proceed in the Bayesian analysis since the
Bayesian inference depends on prior and likelihood function, con-
jugate prior for α, β, σand v was chosen separately.

Priorofα, β ∼ N(βp, Bp) (22)

Where βp and Bpare the prior mean and the covariance respec-
tively,
all the posterior moment ofαand β exist, the posterior of α,βstill
follows normal distribution i. e.,

α, β |y, v, σ ∼ N(βp, Bp) (23)

with

Bp =

(∑n
t=1 Xt−1X

T

δ2σvi

)
+B−1

0 ) (24)

and
βp = βp

(∑n
i=1 (yi − uvi)

δ2vi

)
+B−1

p βo (25)

For the prior on σ, inverse gamma distribution I G(a,b), inv Gamma
(shape = n0, scale = s0, was chosen with density

f(x

∣∣∣∣n0, s0) =
s0

n0

Γ (n0)
x−n0−1 exp

(
−s0

x

)
(26)

with parameters a = n0
2

and b = so
2

the posterior distribution for
σ follows an inverse Gamma distribution

σ |y, α, β, v ∼ IG(
n∗

2

s∗

2
) (27)

with n∗ =no + 3n and

s∗ = so + 2

n∑
i=1

µivi +

n∑
i=1

(
(Yt −X ′

t−1β − µvi)
2

σ2vi

)
(28)

The prior of νi follows a generalized inverse Gaussian distribution
vi |yt, α, β, σ ∼ GIG(

1

2
, αi, γi) (29)

where the probability density function ofGIG(v, α, γ)is given by

f(x

∣∣∣∣v, α, γ) = (γ |α)v

2kv(αλ)
xv−1 exp

(
−1

2
(α2x−1 + γ2x)

)
(30)

x > 0,−∞ < v < ∞, α, γ ≥ 0, and kv(αγ) is a modified Bessel
function of the third kind.

However, the posterior distribution for νi still follows a general-
ized inverse Gaussian distribution

vi |yt, α, β, σ ∼ GIG(
1

2
, αi, γi) (31)

with

α2
i =

(Yt − x′
t−1β)

δ2σ
(32)

and

γ2
i =

2

σ
+

µ2

δ2σ
(33)

The fully conditional posterior distribution of α, β, σ, ν is not of
tractable form, so therefore we employed Gibb’s sampling method
to estimate the posterior.

The Gibb’s samplers sampled from

σ | α, β, ν, y

v | α, β, σ, y

α, β | σ, ν, y

Which converges to the joint conditional posterior distribution
combining the likelihood function of the data, L(yt |α, β, σ, ν)
given by

p(α, β, σ, ν |y ) ∝ L(yt |α, β, σ, ν) .p(σ |α, β, ν, y t).

p(v |α, β, σ, y t).p(α, β |σ, ν, y t) (34)

Combining the likelihood density in (21) with the
prior specification for α, β, σand v the mixing func-
tion, in equations (22), (26) and, (29). The joint
posterior distribution of (α, β, σ and v) becomes
π(α, β, σ, ν, |yt,Y ′∗

t−1, X
′∗
t−1, τ) ∝ L (ytY

′∗
t−1α,X

′∗
t−1β, σ, v, τ)×

joint priors of (α, β, σ and v)

This yields the following full conditional posteriors α, β |yt, σ, v ∼ N(βp, Bp )

σ |yt, α, β, v ∼ IG
(

n∗

2
, s∗

2

)
v
∣∣yt, α, β, σ ∼ GIG

(
1
2
, αiγi

)
 (35)

Based on the conditional posterior densities ofα, β, σ and v which
are not analytically tractable in equation (41), we turn to the
MCMC computation method using Gibb’s sampling to draw sam-
ples from the posterior. Gibb’s sampler is an iterative Monte Carlo
schemedesigned to extract conditional posterior distribution from
intractable joint distribution.

3.2. Empirical applications
To illustrate the estimation of Causality regression quantiles em-
pirically and using Bayesian paradigms, the data set from Nige-
ria Economy was considered which comprised of the GDP growth
as the dependent variable while the independent variable under
study is the export rate, import rate, inflation and, past GDP at time
t− 1 ranging from the period of 1985 - 2020. The model used was:

yt = αo + α1yt−1 + β1x1t−1 + β2x2t−1 + β3x3t−1β4x4t−1 + ϵt
(36)

where yt = GDP growth; x1t−1 = import rate at time t-1; x2t−1 =
export rate at time t-1;x3t−1 = inflation rate at time t-1 and
x4t−1 = exchange rate at time t-1
Bayesian inferences depend on prior and likelihood function, the
likelihood function that was based on asymmetric Laplace distri-
bution in equation (21) was employed, both intercept and coef-
ficient of the predictor were sampled from the posterior distri-
bution defined in equation (35) using Gibb Sampling iterations.
Causality Bayesian quantile regression was analyzed empirically
by examining the causal relationship among GDP growth in Nige-
ria and other macro-economic variables, it was checked whether
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the GDP growth is driven by past GDP itself and or other macro-
economic variables, the causal Bayesian estimation method was
analyzed by examining the significance of the estimated param-
eters. All Bayesian estimates inferences were based on 120,000
Gibbs Sampling iterates with 20,000 burn-in replications discarded
and 100,000 replications retained. The comparison was made be-
tween the effectiveness of Causality Bayesian Quantile Regression
and Causality Quantile Regression estimates. Mean square error
was used as a criterion of validation to measure the relative effec-
tiveness of quantile regression in exploring the data at τ th quan-
tile.

4. Results and discussion
Table 1 presented the estimates of selected quantiles covering the
lower, middle, and upper quantiles of Causality Bayesian quantile
regression (CBQR); Causality Quantile Regression (CQR), and the
empirical analysis on how the past GDP and other explanatory vari-
ables cause the GDP using Bayesian and frequentist approach. The
Causality Bayesian Quantile Regression (CBQR) coefficient param-
eters in the model stated in equation 20 were obtained from the
estimation of conditional posteriors derived in equation 35 using
the Gibb’s Sampling iteration procedures itemized from equation
18 to equation 34 while the quantile regression method of estima-
tion highlighted in equation 1 to equation 16 was used to estimate
the coefficient of causality parameters (CQR) in equation 14 apply-
ing the model stated in equation 9 using the lower quantiles (0.05,
0.10, 0.15); middle quantiles (0.50, 0.55, 0.60) and upper quantiles
(0.85, 0.90, 0.95) respectively.
Posterior estimates with their standard deviation in parentheses
are reportedwith 95% credible intervals formed by 2.5th and 97.5th
samples quantiles of the MCMC iterates which are considered sig-
nificant does not include zero and are shown bold below in Table
1. From results based on quantile effect using Causality Bayesian
quantile regression (CBQR) models and Causality Quantile Regres-
sion (CQR)models in Table 1, the following summaries were drawn
out:

• The posterior means are all contained in the credible inter-
vals.

• The posteriormeans of CBQR are all contained in the 95% cred-
ible intervals.

• The omitting lagged dependent variable does not create in-
consistency in the estimates of the parameter involved

• The estimated parameters vary widely with τsince the loca-
tion is quantile-dependent.

• The statistically and positive effect was more reflected at the
extreme tails of the distribution.

• In Bayesian analysis,the smaller data set can be analyzedwith-
out losing the power of precisions

• Bayesian quantiles regression estimates produce a smaller
standard error

• The Bayesian estimate is similar to those based on quantile
regression indicating the approach is practical and parameter
uncertainty has been established

In the empirical analysis, the adaptive Bayesian Markov chain
Monte Carlo scheme using Gibb’s sampler was designed to illus-
trate the examination of possible causal, interactions between
Nigeria’s GDP and other macro-economic variables, over a range
of any specific quantile. The Granger causality was used to expati-
ate the causal effects of the macroeconomic variables understudy
on Nigeria’s GDP and also to reflect whether the past GDP growth
granger causes the present economic growth in Nigeria. Bayesian
method of estimation was used to estimate the causality parame-
ters in which inferences were drawn using the credible intervals.

The results proved the evidence of dependencies among the se-
lected macroeconomic variables under the study years. The GDP
growth is the response variable while the import rate, export rate,
inflation rate, the exchange rate are the explanatory variables. The
impact of the exchange rate is statistically significant at the lower
tail and the upper part of the conditional distribution of the GDP
growth. The statistical effect of the exchange rate in the tail ends
granger cause the economic effect on the growth of the conditional
distribution of the GDP in the data set as it was discovered by [19].
The exchange rate plays an important role in determining the po-
sition of a country in terms of international trade. Moreover, the
negative relationship between the conditional distribution of GDP
growth and the export rate is related to the declining growth no-
ticed in the economic growth in Nigeria justifying the research
work of [1]. The results also show a positive relationship between
the inflation rate and the economic growth in Nigeria across the
quantiles of time specification under study. This result justifies
the work of [20] that revealed that inflation is one of the major
macroeconomic variables that undermine the growth of Nigeria’s
economy across the quantiles. Moreover, the magnitude of the ef-
fect of the import rate tends to granger cause the GDP growth than
another macroeconomic variable in the lower tail of the distribu-
tion while the past GDP does not have a significant causality effect
on the present GDP growth.
(CBQR), (CQR) represent Causality Bayesian quantile regression
model and Causality Quantile regression model respectively.
From Table 2 above, CBQR procedures report smallerMSE in all the
quantiles, the differences in terms of theMSE are less evident in the
lower tail while they become more noticeable in the heavy tail in
CBQR than CQR
Comparing the frequentist approach with the Bayesian approach
using table 4.23, it was revealed that the Bayesian approach pro-
duced minimal MSE which implies that the Bayesian approach in
estimating causality regression quantiles outperformed the fre-
quentist approach in terms of MSE.

5. Conclusion

This study expatiated the estimation of regression quantiles un-
der the Bayesian approach. The research work measured quantile
causal relations using the likelihood-based approach, estimating
regression quantiles, and explored the predictive ability of amodel
on a data set.

Quantile regression provides location, scale, and slope shift in-
formation on the conditional distribution of the response vari-
able. The research provided a practical framework for allowing
Bayesian parameter estimation to be implemented on more com-
plex quantile regression models in a relatively straightforward ap-
proach. Bayesian inference to quantile regression models regards
unknown parameters as random variables and the parameter un-
certainty is taken into account without relying on asymptotic ap-
proximations Causality Bayesian quantile regression model pro-
vides estimates that are more efficient and less biased. Granger
causality is based on precedence and predictability.

Empirically, this paper investigates the relationship and effect of
some key macroeconomic variables on Nigeria’s real GDP growth.
The research illuminates the discussion of the causality relation-
ship between inflation rate, exchange rate, import, export rate,
and GDP growth in Nigeria. The empirical analysis used quantile-
based locations procedureswhich allow the research to investigate
more general notions of location beyond the center of a distribu-
tion. The results revealed that there is amore asymmetric relation-
ship between the GDP growth and the macroeconomic variables
which may not be shown using causality mean regression analysis.
The economic implication of this is that the macroeconomic vari-
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Table 1: The posterior estimates of the parameter from the Bayesian approach and Frequentist estimates.

τ 0.05 0.10 0.15
CBQR Credible Intervals CQR CBQR Credible Intervals CQR CBQR Credible Intervals CQR

2.5th 97.5th 2.5th 97.5th 2.5th 97.5th
α̂0 0.2640

(0.038)
0.0312 0.9528 0.4518

(0.15)
0.2595
(0.033)

0.0317 1.786 0.2536
(0.22)

0.2659
(0.074)

0.2181 0.9265 0.4755
(0.5)

α̂1 0.7651
(0.046)

0.2143 2.2307 0.6930
(0.12)

0.7518
(0.025)

0.3862 1.287 0.8862
(0.42)

0.7680
(0.062)

0.2302 1.1289 0.7789
(0.296)

β̂1 1.0128
(0.031)

1.0056 2.3816 1.0248
(0.19)

1.0016
(0.049)

1.0012 1.63 1.1343
(0.24)

1.0438
(0.051)

0.0008 3.1592 1.0471
(0.48)

β̂2 -0.0446
(0.069)

-
0.0029

0.1638 -
0.0487
(0.21)

-0.0486
(0.017)

-
0.0296

1.5527 -
0.0742
(0.37)

-0.0586
(0.061)

-
0.0029

0.0714 -
0.0457
(0.29)

β̂3 1.0041
(0.017)

0 2.7426 1.1108
(0.37)

1.0029
(0.068)

0.4916 3.1094 1.2774
(0.11)

1.0059
(0.049)

1.0002 1.1978 1.0719
(0.14)

β̂4 1.1714
(0.027)

1.0021 1.2054 1.1916
(0.15)

1.1036
(0.074)

1.0291 2.8125 1.2809
(0.6)

1.1817
(0.04)

1.0623 2.0653 1.2487
(0.16)

τ 0.50 0.55 0.60
CBQR Credible Intervals CQR CBQR Credible Intervals CQR CBQR Credible Intervals CQR

2.5th 97.5th 2.5th 97.5th 2.5th 97.5th
α̂0 0.3969

(0.018)
-0.205 1.8853 0.4951

(2.70)
0.2659
(0.074)

0.1975 1.0897 0.4935
(0.97)

0.4637
(0.102)

0.0117 1.1863 0.5498
(0.73)

α̂1 0.9016
(0.05)

0.0312 2.3684 0.8736
(0.18)

0.7680
(0.062)

0.2296 2.0984 0.8951
(0.02)

0.9613
(0.06)

0.3729 3.0096 0.9839
(0.26)

β̂1 1.2468
(0.032)

0.4142 2.5932 1.1274
(0.60)

1.0438
(0.051)

0.0018 3.2269 1.2930
(0.26)

1.1725
(0.09)

0.2047 2.5771 1.3437
(0.51)

β̂2 -0.079
(0.045)

-
0.0027

0.1954 -
0.0658
(0.99)

-0.0586
(0.061)

-
0.0046

0.0005 -
0.0748
(0.30)

-0.0822
(0.024)

-
0.0257

0.0833 -
0.0859
(0.64)

β̂3 1.1994
(0.008)

0.1165 1.9973 1.2311
(0.12)

1.0059
(0.049)

0.0007 2.7729 1.1672
(0.10)

1.3071
(0.019)

0.0555 4.1862 1.3485
(0.17)

β̂4 1.1937
(0.024)

0.2781 2.8355 1.2536
(0.77)

1.1817
(0.160)

0.0019 3.1832 1.2903
(0.32)

1.3386
(0.052)

0.3094 2.6793 1.3794
(0.57)

τ 0.85 0.90 0.95
CBQR Credible Intervals CQR CBQR Credible Intervals CQR CBQR Credible Intervals CQR

2.5th 97.5th 2.5th 97.5th 2.5th 97.5th
α̂0 0.4857

(0.05)
-
0.0703

1.7361 0.4948
(0.12)

0.2716
(0.082)

0.037 0.8836 0.4952
(0.44)

0.4803
(0.09)

0.1963 0.5527 0.5855
(0.61)

α̂1 1.0534
(0.018)

0.0284 1.9703 0.8897
(0.06)

0.7725
(0.050)

0.3392 1.9803 0.8969
(0.27)

0.9774
(0.586)

0.164 3.1776 1.003
(0.27)

β̂1 1.3298
(0.027)

0.5103 3.0561 1.1285
(0.428)

1.0449
(0.063)

1.0024 2.9467 1.2948
(0.31)

1.1854
(0.035)

0.437 2.9946 1.3628
(0.05)

β̂2 -0.0618
(0.06)

-
0.0028

0.0592 -
0.0686
(0.92)

-0.0596
(0.205)

-
0.0503

0.3752 -
0.0748
(0.02)

-0.0345
(0.062)

-
0.0069

0.0097 -
0.0576
(0.37)

β̂3 1.2848
(0.082)

0.1078 2.6422 -
0.0182
(0.20)

1.0096
(0.018)

0.1168 2.8746 1.2978
(0.10)

1.3625
(0.017)

0.2774 3.4476 1.3571
(0.62)

β̂4 1.3751
(0.007)

1.0013 3.153 1.2405
(0.17)

1.1849
(0.032)

1.0016 2.1748 1.2918
(0.74)

1.3856
(0.048)

1.0925 3.883 1.3853
(0.53)
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Table 2: Empirical data MSE of quantile causality parameter estimates.

τ CBQR CQR
0.05 0.0064 0.00258
0.1 0.0008 0.00165
0.15 0.0049 0.0022
0.2 0.0015 0.00315
0.25 0.0053 0.072
0.35 0.006 0.0376
0.4 0.031 0.0295
0.45 0.0016 0.0826
0.5 0.002 0.0945
0.55 0.0032 0.0413
0.6 0.0061 0.019
0.65 0.0096 0.0364
0.7 0.0008 0.0266
0.75 0.0047 0.081
0.8 0.0006 0.0297
0.85 0 0.061
0.9 0.0002 0.0294
0.95 0.0005 0.0233

ables studied are elastic indicating that their variations will yield
proportionate change in the level of GDP in Nigeria. From the sum-
mary of the empirical results, it was revealed that Bayesian esti-
mate results provide exact estimation which duly accounts for pa-
rameter uncertainty which is all consistent with the theoretical re-
sults as it was established by [8]. The mean of the posterior is simi-
lar to those based on quantile regression, indicating the approach
is practical and parameter uncertainty has been established.

Government should maintain stable macroeconomic policies by
strengthening appropriate economic policies that will reduce the
problem associated with the high inflation rate and exchange rate.
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